本文二维码信息
二维码(扫一下试试看!)
Preparation of NFC by Homogenizing and Ultrasonic Method and the Properties of Its Nanopaper
  
DOI:10.11980/j.issn.0254-508X.2016.07.004
Key Words:homogeneous  ultrasonic  nanofibrillated cellulose  nanopaper
Fund Project:国家“973”计划项目(2010CB732206);2013广东省部产学研专项资金技术前沿项目(2013B090500071)。
Author NameAffiliation
姚志明 华南理工大学制浆造纸工程国家重点实验室广东广州510640 
陈 港* 华南理工大学制浆造纸工程国家重点实验室广东广州510640 
方志强 华南理工大学制浆造纸工程国家重点实验室广东广州510640 
况宇迪 华南理工大学制浆造纸工程国家重点实验室广东广州510640 
邝其通 华南理工大学制浆造纸工程国家重点实验室广东广州510640 
许雅希 华南理工大学制浆造纸工程国家重点实验室广东广州510640 
张宝军 华南理工大学制浆造纸工程国家重点实验室广东广州510640 
Hits: 6819
Download times: 2026
Abstract:NFC was prepared by using bleached krafteucalyptus pulp as new material, it was treated with TEMPO oxidation process at first, then fibrillated by homogenizing or ultrasonic method, finally the nanopaper made of the NFC was fabricated by solution casting method. The effects of different preparation methods on the properties of NFC and its nanopaper were discussed. The results showed that under different energy consumption, NFC prepared by ultrasonic treatment 2 h and 4 h had better transparency, higher length to diameter ratio and smaller diameter than that prepared by homogenizing 2 times and 5 times, the smallest width of the fibril was only 19 nm. Compared with homogenizing treatment, the increase of ultrasonic treatment intensity (energy consumption) was more advantageous to improve the tensile strength and water vapor permeability of the nanopaper when process energy consumption was lower than 20 kWh, moreover, the nanopaper prepared by ultrasonic 2 h and 4 h showed better optical properties than homogenizing 2 times and 5 times, the highest tensile strength and light transmittance of nanopaper was found by ultrasonic treatment 4 h, which were 155.8 MPa and 89.45% respectively and superior to the ordinary polymer film, it was expected to be applied to the substrate of flexible display electronic devices.
View Full Text  HTML  View/Add Comment  Download reader