本文二维码信息
二维码(扫一下试试看!)
Study on the Preparation of Cellulose-based Porous Material by Freeze-drying Process
  
DOI:10.11980/j.issn.0254-508X.2017.11.006
Key Words:plant fibers  freeze-drying  porous material  the solid content of fiber suspension  freeze-temperature
Fund Project:国家重点研发计划(2017YFB0308300);东华大学国家重点实验室开放基金(LK1601);国家自然科学基金(31670593);陕西省重点研发计划项目(2017GY-140)。
Author NameAffiliation
马珊珊1,2 1.陕西科技大学轻工科学与工程学院中国轻工业纸基功能材料重点实验室陕西西安7100212.轻化工程国家级实验教学示范中心(陕西科技大学)陕西西安710021 
张美云1,* 1.陕西科技大学轻工科学与工程学院中国轻工业纸基功能材料重点实验室陕西西安710021 
杨 斌1 1.陕西科技大学轻工科学与工程学院中国轻工业纸基功能材料重点实验室陕西西安710021 
苏治平1 1.陕西科技大学轻工科学与工程学院中国轻工业纸基功能材料重点实验室陕西西安710021 
宋顺喜1 1.陕西科技大学轻工科学与工程学院中国轻工业纸基功能材料重点实验室陕西西安710021 
Hits: 6030
Download times: 1889
Abstract:In this study, a cellulose-based porous material was prepared from plant fibers by freeze-drying technique. The effect of the solid content of fiber suspension and freeze-temperature on the microstructure and properties of the prepared porous materials was investigated. Meanwhile, the action and formation mechanisms of ice crystal on the fibers during freezing process and the microstructure of final porous material were discussed. The results revealed that the increase of solid content of fiber suspension could transform the Z direction microstructure of final porous material from an isotropic architecture to an anisotropic lamellar porous structure which could prevent Euler buckling of porous materials, leading to the shortening of plateau curve and the shiftment of densification curve to lower strain percentage in stress-strain curve. With the decreasing of freeze-temperature, the viscous resistance acting on the fibers at the solidification front of ice crystal was enhanced, thus the fibers had uniform distribution as it were swallowed by ice crystal and resulting in the porous materials with less two-sidedness. In addition, porous material produced at lower freeze-temperature owned smaller pores due to the thickness of lamellar ice crystal was reduced, which improved its ability to resist stress and deformation, leading to the densification region in stress-strain curve occurred at lower strain point.
View Full Text  HTML  View/Add Comment  Download reader