|
二维码(扫一下试试看!) |
Preparation and Properties of ZIF-67 In-situ Loaded Cellulose Nanofibril-based Separator for Lithium-ion Batteries |
Received:March 08, 2024 |
DOI:10.11980/j.issn.0254-508X.2024.05.009 |
Key Words:acetylated cellulose nanofibril ZIF-67 separator lithium-ion batteries |
Fund Project:广西青年科学基金项目(2018GXNSFBA138027);广西高校中青年教师基础能力提升项目(2018KY0023);广西高等学校千名中青年骨干教师培育计划项目;广西大学科研基金项目(学术骨干项目)(XGZ170232);特色木质纤维资源清洁高效分离与利用(2023GXNSFGA026001)。 |
|
Hits: 1439 |
Download times: 896 |
Abstract:In this study, cellulose nanofibril (CNF) was acetylated followed by in-situ loading of ZIF-67 and electrolyte impregnation to prepare a novel ZIF-67@acetylated cellulose nanofibril (ZIF-67@ACNF) separator for lithium-ion batteries. The effects of particle size of ZIF-67 on the structure and performance of the separator were systematically investigated. The results showed that as the particle size of ZIF-67 decreased from 0.46 μm (in ZIF-674@ACNF separator) to 0.25 μm (in the ZIF-678@ACNF separator), the porosity of the separator reduced from 74.2% to 52.1%, the ionic conductivity decreased from 0.75 mS/cm to 0.22 mS/cm, the interfacial resistance increased from 112.5 Ω to 1 115.7 Ω, the lithium-ion transference number declined from 0.41 to 0.31, and the electrochemical stability window went down from 5.1 V to 4.5 V. The initial capacity of assembled cell by ZIF-674@ACNF separator reached 159.6 mAh/g with a capacity retention rate of 90% after 200 cycles at 0.5 C under room temperature. |
View Full Text HTML View/Add Comment Download reader |