Abstract:The total pressure control of the diluted water hydraulic headbox is directly related to the quality of the paper. The traditional PID method has low control precision for the object which is nonlinear, parameter time-varying and model uncertainty. Although the traditional genetic algorithm can optimize the PID parameters and improve the precision, it has a slow convergence speed and a long dynamic response time, which limit its application in the control of high speed paper machine. Aiming at these problems, an improved genetic algorithm, which optimize the operators of crossover and mutation, take the optimal tracking strategy and inprove convergence criterion to enhance theorenall optimization ability of genetic algorithm and speed up the convergence rate, was employed in this paper to tune the PID parameters in total pressure control of headbox of the paper-making machine. The simulation results showed that the proposed method had faster response speed and better robustness than the Z-N tuning and traditional genetic algorithm. |