本文二维码信息
二维码(扫一下试试看!)
Soft Sensor Modeling of Papermaking Effluent Treatment Processes Using RPLS
  
DOI:10.11980/j.issn.0254-508X.2016.10.007
Key Words:recursive partial least squares  partial least squares  soft sensor modeling  papermaking effluent treatment
Fund Project:南京林业大学高层次人才科研启动基金(No.16310-5996);江苏省制浆造纸科学与技术重点实验室开放基金项目(201010);江苏高校优势学科建设工程资助项目(PAPD)。
Author NameAffiliation
杨 浩1 1.南京林业大学江苏省制浆造纸科学与技术重点实验室,江苏南京,210037 
莫卫林1 1.南京林业大学江苏省制浆造纸科学与技术重点实验室,江苏南京,210037 
熊智新1 1.南京林业大学江苏省制浆造纸科学与技术重点实验室,江苏南京,210037 
黄明智2 2.中山大学水资源与环境系,广东广州510275 
刘鸿斌1,* 1.南京林业大学江苏省制浆造纸科学与技术重点实验室,江苏南京,210037 
Hits: 6306
Download times: 2137
Abstract:Soft sensor modeling methods based on partial least squares (PLS) and recursive PLS (RPLS)were used to predict effluent chemical oxygen demand(CODCr) and effluent suspended solids(SS) in a papermaking wastewater treatment process. PLS is unsuitable for the systems with non-linear characteristics and external disturbances. The results showed that the mean absolute percentage error(MAPE),root mean square error(RMSE), and squared correlation coefficient(R2) for CODCr using PLS were 5.3832%, 4.6878, and 0.5892, respectively, and they were 1.3861%, 1.8792, and 0.9221, respectively using RPLS. In terms of SS, the MAPE, RMSE, and R2 were 2.5962%,0.7412, and 0.6651, respectively when using PLS, and the three indices using RPLS were 0.6795%, 0.2198, and 0.9627, respectively. These results indicated that the RPLS model had better prediction performance and higher accuracy compared to the PLS model.
View Full Text  HTML  View/Add Comment  Download reader