|
 二维码(扫一下试试看!) |
Pretreatment of Poplar Wood Residues Using Wet Oxidation to Enhance Enzymatic Digestibility |
|
DOI:10.11980/j.issn.0254-508X.2015.01.002 |
Key Words:poplar wood residues wet oxidation pretreatment pretreatment conditions enzymatic degradability |
Fund Project:国家十二五科技支撑项目“栎类淀粉与秸秆生物质炼制生物柴油及其综合利用产业化示范(项目编号:2014BAD02B02)”。 |
|
Hits: 7257 |
Download times: 2545 |
Abstract:Nowadays production of renewable fuels, especially boil-oil or bio-ethanol,is the main way for efficient utilization of lingo cellulosic biomass in the world. This paper carried out the study to optimize wet oxidation pretreatment conditions for utilizing poplar residues from the preparation sector of paper mill, to produce bioethanol. The research results showed that the optimal conditions of wet oxidation pretreatment for poplar residues were as follows: initial pH value 10, temperature 195℃, time at 195℃ 15 min, oxygen pressure 1.2 MPa. The yield of the obtained material of wet oxidation pretreatment was 51.7%. The optimal enzymatic hydrolysis conditions were: temperature 49℃, time 56 h, enzyme charges 38 FPU/g at the pH of 4.8 and the ratio of substance to liquor was 1∶50. The cellulose conversion rate was 96.4% on the pretreated substance. After wet oxidation pretreatment, hemicelluloses content of the substance decreased from 18.7% to 1.43%, Klasson lignin content decreased from 23.6%% to 13.5%, which mean that almost 43% of lignin and 92% hemicelluloses were degraded and solved from the raw material. XRD analysis indicated that the crystallinity decreased from 57.4% to 54.8%. The obvious fibrilization of the pretreated fiber was found by SEM. HPLC analysis results showed that pretreatment liquid contained higher content of xylose, and monosaccharide degradation products, such as acetic acid, formic acid and furfural. Wet oxidation pretreatment was able to greatly degrade or remove lignin and hemicellulose significantly, reduce the crystallinity of the lingo cellulosic material, which could improve enzymatic degradability and increase reduce sugar yield and cellulose conversion rate. |
View Full Text HTML View/Add Comment Download reader |
|
|
|