本文二维码信息
二维码(扫一下试试看!)
基于梯度增强决策树算法的纸张质量软测量模型
Gradient Boosting Decision Tree Algorithm Based Soft Measurement Model for Paper Quality
收稿日期:2020-01-13  
DOI:10.11980/j.issn.0254-508X.2020.05.006
关键词:  数据模型  纸张质量  软测量  梯度增强决策树(GBDT)算法
Key Words:data model  paper quality  soft measurement  gradient boosting decision tree algorithm
基金项目:
作者单位邮编
江伦 华南理工大学制浆造纸工程国家重点实验室广东广州510640 510640
满奕 华南理工大学制浆造纸工程国家重点实验室广东广州510640
深圳新益昌科技股份有限公司广东深圳518000 
518000
李继庚 华南理工大学制浆造纸工程国家重点实验室广东广州510640 510640
洪蒙纳 华南理工大学制浆造纸工程国家重点实验室广东广州510640 510640
孟子薇 华南理工大学制浆造纸工程国家重点实验室广东广州510640 510640
朱小林 华南理工大学制浆造纸工程国家重点实验室广东广州510640 510640
摘要点击次数: 4853
全文下载次数: 3004
摘要:本研究提出了一种基于梯度增强决策树(GBDT)算法的纸张质量软测量模型,该方法可在线软测量纸张的关键物理指标如抗张强度、柔软度和松厚度。结果表明,采用GBDT进行纸张质量软测量时,抗张强度、柔软度和松厚度的平均相对误差分别为7.21%、7.38%和3.5%;采集新数据验证后,纸张抗张强度、柔软度和松厚度的平均相对误差分别为6.87%、6.88%和3.12%,表明模型对新验证数据的预测结果精度高。
Abstract:In this study, a soft-sensing model of paper quality based on gradient boosting decision tree (GBDT) was proposed. This method could soft-measure the key physical indicators of paper such as tensile strength, softness and bulk online. The results showed that the average relative errors of tensile strength, softness and bulk when using GBDT for soft measurement of paper quality were 7.21%,7.38%, and 3.5%, respectively. Comparing the new data collected for verification, the average relative errors of tensile strength, softness, and bulk were 6.87%, 6.88%, and 3.12%, respectively, indicating that the model had high accuracy in predicting the new verification data, which could provide a reference for stabilizing product quality, optimizing the production process and reducing production costs.
查看全文  HTML  查看/发表评论  下载PDF阅读器