摘要
本研究利用与纤维素纸基材料纤维同质同源的天然纤维素对纸基材料进行涂布增强。结果表明,ZnCl2/纤维素溶液能够在纸基材料表面形成一层致密的再生纤维素薄膜,显著改善了涂布纸内部及表面纤维间的界面结合,降低了涂布纸的孔隙率,促进了涂布纸表面结构的致密化,使涂布纸的阻隔性能和机械性能得到较大提升。与未涂布纸相比,涂布纸的透气度、水蒸气透过率和氧气透过率分别降低了99.8%(涂布量0.8 g/
纤维素纸基材料的原材料是天然纤维素纤维,具有原料广泛、良好的可再生性和可降解性等优点,是减轻环境污染问题和促进包装行业可持续发展的重要材
纤维素是一种极具产业规模的生物质高分子材料,具有天然的可降解性和可再生性。然而,纤维素分子的高结晶度和分子内、分子间氢键使其难溶于水和常规溶剂,极大地限制了其应用价
熔盐水合物是一种以无机盐为主要成分的高浓盐溶液,具有润胀纤维素、破坏氢键的作
本研究的重点是在纤维素纸基材料上涂布同质同源的天然纤维素,以制备阻隔性能和机械性能增强的全生物可降解复合纸。利用环保型的ZnCl2熔盐水合物润胀及溶解纸浆纤维得到纤维素溶液,通过迈耶棒涂布技术在多孔隙结构的纤维素纸基材料表面进行涂布,以水洗脱盐及再生的方式获得再生纤维素涂布纸。同时,考察溶解浆纤维在ZnCl2熔盐水合物中的溶解过程,表征复合纸的微观形貌、孔隙率、化学结构变化和热降解行为,研究再生纤维素涂层对纸基材料的水蒸气阻隔性、氧气阻隔性、疏水性和机械性能的影响,得到一种可全生物降解阻隔性包装材料的制备方法,该制备工艺概念简单、绿色环保、可操作性强,在可降解阻隔性包装领域将具有一定的应用潜力。
针叶木溶解浆(聚合度682.3,α-纤维素质量分数96.95%),中国某纸浆厂生产;漂白针叶木浆,由瑞典Sodra工厂提供;氯化锌(ZnCl2,纯度98%),购自上海麦克林科技股份公司;实验中所用去离子水为实验室自制。
Valley打浆机(P40130)、打浆度仪(95587)、纸页成型器(RK-3A),奥地利PTI公司;RDS迈耶棒涂布器,美国RDS公司;偏光显微镜(DYP-990),上海点应光学仪器有限公司;纸和纸板厚度测定仪(PN-PT6),杭州品享科技有限公司;水蒸气透过率测定仪(W3/062),济南兰光机电技术有限公司;氧气透过率测定仪(Y110),广州标际包装设备有限公司;电脑测控抗张试验机(DCP-KZ1000)、电脑测控纸基材料耐破度仪(DCP-NPY1200),四川长江造纸仪器有限责任公司;层间剥离强度试验仪(T005),中国制浆造纸研究院有限公司;扫描电子显微镜(SEM,S-3400N),日本日立公司;全自动真密度分析仪(3H-2000TD),贝士德仪器科技(北京)有限公司;葛尔莱透气度仪(4110N-4320),美国Gurley公司;Cobb吸水性测定仪(P95933),奥地利PTI公司;傅里叶变换红外光谱仪(FT-IR, TENSOR27),德国Bruker公司;热重分析仪(TGA/DSCI),瑞士Mettler Toledo公司;接触角测量仪(DSA20),德国KRUSSGMBH公司。
初步实验和研究结果表
首先,利用迈耶棒涂布技术将配制好的ZnCl2/纤维素溶液涂布至1.3.2制备纸张表面,随后将其在35 ℃条件下静置10 min,再将其浸入去离子水中5 s进行纤维素再生及脱盐处理,然后在85 ℃条件下利用烘缸干燥固化,获得再生纤维素涂布纸(以下简称涂布纸),其制备过程如

图1 涂布纸的制备过程
Fig. 1 Preparation process of coated paper
利用SEM对涂布纸表面形貌进行观察,样品经离子溅射仪做喷金处理,扫描电压为10 kV;通过能谱仪(EDS)测定涂布纸表面的元素种类和元素含量,在样品表面喷金1 min,在10 kV的加速电压下对测试样品进行观察;涂布纸的厚度(δ,mm)按照GB/T 451.3—2002测定;采用全自动真密度分析仪测定涂布纸的孔隙率,将涂布纸放入50 mL样品池后,以样品池直接作为样品测试腔的“下装式”的测试方式测定孔隙率。
通过热重分析仪测定涂布纸的热稳定性,在40 mL/min空气氛围下,以10 ℃/min的速率从30 ℃加热到800 ℃进行测定。测试完毕后,输出TG曲线,将TG曲线作一阶导数,可得DTG曲线。
根据TAPPI标准(T460om—2011),使用葛尔莱透气度仪测量涂布纸的透气度,单位为μm/(Pa·s);基于ASTM—E96标准,采用水蒸气透过率测定仪(质量法)测定涂布纸的水蒸气透过量,用于表征其水蒸气阻隔性能。测试温度为(23±0.5) ℃,相对湿度分别为(25±1)%、(50±1)%和(90±1)%。采用氧气透过率测定仪(压差法测试)在(23±0.5) ℃、相对湿度(50±1)%条件下测量氧气透过量,用于表征涂布纸的氧气阻隔性能。
根据标准ASTM D724—99(2019),采用接触角测量仪测定去离子水接触样品60 s内的水接触角(WCA),用于表征涂布纸的表面润湿性。根据测试标准GB/T 1540—2002,采用Cobb吸水性测试仪测定涂布纸的吸水性。将样品裁剪为直径125 mm的圆片,保证每张涂布纸的测试面积为(100±0.2) c
(1) |
式中,m1、m2分别为涂布纸吸水前后的质量,g。
天然纤维素纤维完全溶解,形成均相稳定的纤维素溶液,是制备再生纤维素涂层并保持其性能稳定的关

图2 溶解浆纤维在ZnCl2熔盐水合物中的溶解过程
Fig. 2 Dissolution process of dissolving pulp fibers in ZnCl2 molten salt hydrate
通过SEM观察了再生纤维素涂布前后纸张表面形貌的变化(

图3 未涂布纸和涂布纸的SEM图
Fig. 3 SEM images of uncoated paper and coated paper

图4 涂布纸的元素分析、孔隙率和厚度
Fig. 4 Elemental analysis, porosity, and thickness of coated paper
值得注意的是,由
孔隙率是反映纸基材料微观结构的重要参数,本研究针对再生纤维素涂布前后纸张的孔隙率进行了测量,结果如
为了解再生纤维素涂布引起的化学结构变化,通过FT-IR进一步对涂布纸进行分析研究,结果如

图5 再生纤维素涂布前后纸张的FT-IR谱图
Fig. 5 FT-IR spectra of paper before and after regenerated cellulose coating treatment
通过热稳定性研究再生纤维素涂层引起的热降解行为变化,其TG和DTG曲线如

图6 再生纤维素涂布前后纸张的热稳定性
Fig. 6 Thermal stability of paper before and after regenerated cellulose coating treatment
在食品包装领域,纸基材料通常被要求具备相应的水蒸气和氧气阻隔性能,以免引起食物的吸潮、氧化及变质等现

图7 涂布纸的水蒸气透过率、透气度和OTR
Fig. 7 WVTR, air permeability, and OTR of coated paper
Cobb值和WCA分别用于表征纸基材料的抗水性和表面润湿性。

图8 涂布纸的疏水性能
Fig. 8 Hydrophobicity of coated paper
实现纸基材料阻隔性能的同时确保其足够的机械强度,对纸基材料的实际应用具有重要意义。纸基材料由纤维的网络结构构成,其强度取决于网络中纤维接触点所形成的各个氢键结合力的强度、形成氢键结合力的总数以及这些接触点在纸中的分

图9 涂布纸的机械性能
Fig. 9 Mechanical properties of coated paper
本研究通过ZnCl2熔盐水合物润胀并溶解针叶木溶解浆纤维制备了天然纤维素溶液,并以一种简单、高效的涂布方式在具有多孔隙结构的纸基材料表面生成再生纤维素涂层,探讨了再生纤维素涂层的作用机制及其对涂布纸阻隔性能和机械性能的影响。
3.1 ZnCl2/纤维素溶液在涂布纸表面生成1层致密的再生纤维素膜,利用氢键结合作用显著改善了涂布纸内部及表面纤维间的界面结合,降低了涂布纸孔隙率,促进了涂布纸表面结构的致密性和规整性的改善。
3.2 涂布纸的阻隔性能显著提高。涂布纸的透气度、水蒸气和氧气透过率相比未涂布纸分别降低了99.8%(涂布量0.8 g/
3.3 涂布纸的机械性能明显增强。与未涂布纸相比,涂布纸(涂布量1.0 g/
参 考 文 献
ZHANG F, XU K, BAI Y, et al. Multifunctional cellulose paper-based materials[J]. Cellulose, 2023, 30(14): 8539-8569. [百度学术]
张雪, 胡小莉, 张红杰, 等. 纸基材料水蒸气阻隔性能的研究现状及发展趋势[J]. 中国造纸, 2022, 41(11): 87-101. [百度学术]
ZHANG X, HU X L, ZHANG H J, et al. Research Progress and Development Trend of Water Vapor Barrier Property of Paper-based Materials[J]. China Pulp & Paper, 2022, 41(11): 87-101. [百度学术]
刘晓菲, 张雪, 程芸, 等. 多糖聚合物涂层对纸基包装材料水蒸气阻隔性能的研究进展[J]. 中国造纸学报, 2021, 36(4): 76-84. [百度学术]
LIU X F, ZHANG X, CHENG Y, et al. Progress of Water Vapor Barrier Properties of Polysaccharide Polymer Coatings on Paper-based Packaging Materials[J]. Transactions of China Pulp and Paper, 2021, 36(4): 76-84. [百度学术]
TIAN X, WU M, WANG Z, et al. A high-stable soybean-oil-based epoxy acrylate emulsion stabilized by silanized nanocrystalline cellulose as a sustainable paper coating for enhanced water vapor barrier[J]. Journal of Colloid and Interface Science, 2022, 610: 1043-1056. [百度学术]
ADIBI A, TRINH B M, MEKONNEN T H. Recent progress in sustainable barrier paper coating for food packaging applications[J]. Progress in Organic Coatings, DOI:10.1016/j.porgcoat.2023.107566. [百度学术]
KOVALENKO V I. Crystalline cellulose: Structure and hydrogen bonds[J]. Russian Chemical Reviews, 2010, 79(3): 231-241. [百度学术]
TU H, ZHU M, DUAN B, et al. Recent progress in high-strength and robust regenerated cellulose materials[J]. Advanced Materials, DOI:10.1002/adma.202000682. [百度学术]
WU Y, LIANG Y, MEI C, et al. Advanced nanocellulose-based gas barrier materials: Present status and prospects[J]. Chemosphere, DOI:10.1016/j.chemosphere.2021.131891. [百度学术]
MOHD S K, ZAKARIA S, MOATAPHA M, et al. Cellulose Solubility, Solvent and Their Regenerated Cellulose Products: A Review[J]. Sains Malaysiana, 2021, 50(10): 3107-3126. [百度学术]
周慧梅, 张莉莉, 马金霞, 等. 基于金属盐溶液的纤维素溶解及其应用研究进展[J]. 精细化工, 2023, 40(7): 1393-1404. [百度学术]
ZHOU H M, ZHANG L L, MA J X, et al. Research and application progress on dissolution of cellulose in metal salt solutions[J]. Fine Chemicals, 2023, 40(7): 1393-1404. [百度学术]
WEI C, YU F, XIE Y, et al. Multifunctional carboxymethyl cellulose film by adjusting cellulose structure through molten salt hydrates[J]. Industrial Crops and Products, DOI:10.1016/j.indcrop.2024.118405. [百度学术]
曹潇洒, 夏伟宇, 邵鲁鹏, 等. 基于熔盐水合物预处理的木质纤维生物质精炼研究进展[J]. 中国造纸, 2023, 42(2): 77-85. [百度学术]
CAO X S, XIA W Y, SHAO L P, et al. Research Progress of Lignocellulosic Biomass Refining Based on Molten Salt Hydrate Pretreatment[J]. China Pulp & Paper, 2023, 42(2): 77-85. [百度学术]
CHEN Y, YU H Y, LI Y. Highly Efficient and Superfast Cellulose Dissolution by Green Chloride Salts and Its Dissolution Mechanism[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(50): 18446-18454. [百度学术]
REGMI S. Biodegradable films from soyhull cellulosic residue with UV protection and antioxidant properties improve the shelf-life of post-harvested raspberries[J]. Food Chemistry, DOI:10.1016/j.foodchem.2024.140672. [百度学术]
ZHU Q, ZHOU X, MA J, et al. Preparation and characterization of novel regenerated cellulose films via sol-gel technology[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 17900-17906. [百度学术]
WANG S, LU A, ZHANG L. Recent advances in regenerated cellulose materials[J]. Progress in Polymer Science, 2016, 53: 169-206. [百度学术]
SEN S, LOSEY B P, GORDON E E, et al. Ionic liquid character of zinc chloride hydrates define solvent characteristics that afford the solubility of cellulose[J]. Journal of Physical Chemistry B, 2016, 120(6): 1134-1141. [百度学术]
LEIPNER H, FISCHER S, BRENDLER E, et al. Structural changes of cellulose dissolved in molten salt hydrates[J]. Macromolecular Chemistry and Physics, 2000, 201(15): 2041-2049. [百度学术]
MA W, LI X, ZHANG L, et al. Novel insights on room temperature-induced cellulose dissolution mechanism via ZnCl2 aqueous solution: Migration, penetration, interaction, and dispersion[J]. International Journal of Biological Macromolecules, DOI:10.1016/j.ijbiomac.2024.132912. [百度学术]
XI Y, ZHANG L, TIAN Y, et al. Rapid dissolution of cellulose in an AlCl3/ZnCl2 aqueous system at room temperature and its versatile adaptability in functional materials[J]. Green Chemistry, 2022, 24(2): 885-897. [百度学术]
JIANG Z, FAN J, BUDARIN V L, et al. Mechanistic understanding of salt-assisted autocatalytic hydrolysis of cellulose[J]. Sustainable Energy & Fuels, 2018, 2(5): 936-940. [百度学术]
蒋通宝, 张文文, 吴开丽, 等. 自水解辅助纤维素酶解法制备杨木基多孔碳及其电化学性能的研究[J]. 中国造纸, 2022, 41(2): 9-15. [百度学术]
JIANG T B, ZHANG W W, WU K L, et al. Study on the Preparation of Poplar Wood-based Porous Carbon via Dual Mild Activation Method and Its Electrochemical Performance[J]. China Pulp & Paper, 2022, 41(2): 9-15. [百度学术]
SHI C, ZHANG L, SHI Z, et al. Complete utilization of AlCl3/ZnCl2 aqueous solution to produce lignin-containing cellulose films with controlled properties[J]. Industrial Crops and Products, DOI:10.1016/j.indcrop.2022.116200. [百度学术]
冯启明, 石黎花, 吴明, 等. 纳米氧化锌抗菌纸的制备及其抗菌性能的研究[J]. 中国造纸, 2019, 38(3): 37-43. [百度学术]
FENG Q M, SHI L H, WU M, et al. Preparation of Nano-ZnO Antibacterial Paper and Its Antibacterial Performance[J]. China Pulp & Paper, 2019,38(3):37-43. [百度学术]
LI X, LI H, WANG X, et al. Facile in situ fabrication of ZnO-embedded cellulose nanocomposite films with antibacterial properties and enhanced mechanical strength via hydrogen bonding interactions[J]. International Journal of Biological Macromolecules, 2021, 183: 760-771. [百度学术]
ZHANG L, HUANG Y, WU M. A partial dissolution-regeneration strategy for preparing water-resistant composite film of cellulose I and cellulose II with high light transmittance and adjustable haze[J]. Composites Part B: Engineering, DOI:10.1016/j.compositesb.2024.111285. [百度学术]
TAMADDON F, BAGHERI F, AHMADI E. Selective preparation of crystalline or fibrous nano-cellulose carboxylate to fabricate an anti-bacterial hydrogel in co-operation with ZnO and recycled gelatin[J]. International Journal of Biological Macromolecules, DOI:10.1016/j.ijbiomac.2023.124922. [百度学术]
ARRABITO G, PRESTOPINO G, MEDAGLIA P G, et al. Freestanding cellulose acetate/ZnO flowers composites for solar photocatalysis and controlled zinc ions release[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, DOI:10.1016/j.colsurfa.2024.134526. [百度学术]
OKUGAWA A, YUGUCHI Y, HAYAKAWA D, et al. Oxygen permeability of regenerated cellulose films with different water regains[J]. Carbohydrate Polymers, DOI:10.1016/j.carbpol. 2023.120849. [百度学术]
SHEN C, HU C, ZHANG W, et al. Acidified ZnCl2 molten salt hydrate systems as hydrolytic media for cellulose I and II nanocrystal production: From rods to spheres[J]. Cellulose, 2022, 29(14): 7629-7647. [百度学术]
PANG J, MEHANDZHIYSKI A Y, ZOZOULENKO I. A computational study of cellulose regeneration: Coarse-grained molecular dynamics simulations[J]. Carbohydrate Polymers, DOI:10.1016/j.carbpol.2023.120853. [百度学术]
D’ACIERNO F, MICHAL C A, MACLACHLAN M J. Thermal stability of cellulose nanomaterials[J]. Chemical Reviews, 2023, 123(11): 7295-7325. [百度学术]
姜可心, 曾伟新, 王习文. 可降解阻隔涂层在纸基食品包装材料中的应用[J]. 中国造纸, 2021, 40(12): 81-89. [百度学术]
JIANG K X, ZENG W X, WANG X W. Application of Degradable Barrier Coating in Paper Based Food Packaging Materials [J]. China Pulp & Paper, 2021, 40(12): 81-89. [百度学术]
TYAGI P, SALEM K S, HUBBE M A, et al. Advances in barrier coatings and film technologies for achieving sustainable packaging of food products-a review[J]. Trends in Food Science & Technology, 2021, 115: 461-485. [百度学术]
胡小莉, 张雪, 张红杰, 等. 纤维性能对纸张水蒸气阻隔性能的影响[J]. 中国造纸, 2024, 43(1): 38-50. [百度学术]
HU X L, ZHANG X, ZHANG H J, et al. Effect of Fiber Properties on Water Vapor Barrier Performance of Paper[J]. China Pulp & Paper, 2024, 43(1): 38-50. [百度学术]
MACKO J, PODROJKOVA N, ORINAKOVA R, et al. New insights into hydrophobicity at nanostructured surfaces: Experiments and computational models[J]. Nanomaterials and Nanotechnology, DOI:10.1177/18479804211062316. [百度学术]
SONG X, ZOU H, CAO S, et al. Flexible regenerated cellulose/ZnO based piezoelectric composites fabricated via an efficient one-pot method to load high-volume ZnO with assistance of crosslinking[J]. Chemical Engineering Journal, DOI:10.1016/j.cej.2023. 146184. [百度学术]
张美云, 聂景怡, 刘馨茗, 等. 高分子科学视角下“以纸代塑”面临的挑战及应对策略[J]. 中国造纸, 2023, 42(7): 102-117. [百度学术]
ZHANG M Y, NIE J Y, LIU X M, et al. Challenges and Countermeasures of Replacing Plastic with Paper: From the Perspective of Polymer Science[J]. China Pulp & Paper, 2023, 42(7): 102-117. [百度学术]
MENG Q, WANG T J. Mechanics of Strong and Tough Cellulose Nanopaper[J]. Applied Mechanics Reviews, DOI:10.1115/1.4044018. [百度学术]
ZHU R, LIU X, SONG P, et al. An approach for reinforcement of paper with high strength and barrier properties via coating regenerated cellulose[J]. Carbohydrate Polymers, 2018, 200: 100-105. [百度学术]
XUE Y, LI W, YANG G, et al. Strength enhancement of regenerated cellulose fibers by adjustment of hydrogen bond distribution in ionic liquid[J]. Polymers, DOI:10.3390/polym14102030. [百度学术]
KOPACIC S, WALZL A, HIRN U, et al. Application of industrially produced chitosan in the surface treatment of fibre-based material: Effect of drying method and number of coating layers on mechanical and barrier properties[J]. Polymers, DOI:10.3390/polym10111232. [百度学术]