摘要
本文首先基于酸性低共熔溶剂(ADESs)中氢键受体和氢键供体的多样性,总结了普通ADESs、Lewis-ADESs和Brønsted-ADESs在木质纤维生物质预处理过程中的特点,并归纳了ADESs在木质素提取和增值利用领域的研究进展。然后,针对国内外多种ADESs提取木质素的评价方法进行综述,如DFT理论、Kamlet-Taft参数、核磁共振技术(NMR)、傅里叶变换红外光谱(FT-IR)等,探讨了各评价方法的机理及应用情况。最后,从ADESs对木质素结构及木质素溶剂化过程影响的角度,对未来高效和可持续的木质素提取与木质素增值利用进行展望,以期为相关领域的研究提供一定的参考。
从木质纤维生物质中有效提取木质素,是对其增值利用的关键。尽管稀
随着科技的进步和生物经济的快速发展,生物质能源逐渐被认为是有效替代传统能源的资源。然而,目前提取出的木质素仅有一小部分用于制备黏合
木质素是由愈创木基丙烷基本结构单元(guaiacl,G型)、紫丁香基丙烷基本结构单元(syringyl,S型)和对羟基苯丙烷基本结构单元(p-hydroxyphenyl,H型)通过醚键和碳碳键相互连接组成的高分子化合

图1 木质素中3种苯基丙烷基本结构单元的生物合成途径及相应的单元连接
Fig. 1 Biosynthetic pathways of three phenylpropane basic structral units in lignin and the corresponding unit linkage bond
注 *表示中间产物本身可以作为单体引入或用于形成新单体的位置;部分物质的中英文信息如下: 苯丙氨酸氨裂合酶(PAL)、肉桂酸4-羟化酶(C4H)、酪氨酸氨裂合酶(TAL)、4-香豆酸: CoA连接酶(4CL)、对香豆酸-3-羟化酶(C3H)、莽草酸/奎宁酸羟基肉桂酰转移酶(HCT)、肉桂酰辅酶A还原酶(CCR)、咖啡酰莽草酸酯酶(CSE)、咖啡酰辅酶A-O-甲基转移酶(CCoAOMT)、阿魏酸5-羟化酶(F5H)、羟基肉桂醛脱氢酶(HCALDH)。
木质素基本结构单元在不同植物原料中的含量差异可能会对ADESs的提取效果产生影响。Li
木质素基本结构单元 | 草本植物 | 针叶木 | 阔叶木 |
---|---|---|---|
H型 | 10~25 | 0.5~3.4 | 微量 |
G型 | 25~50 | 90~95 | 25~50 |
S型 | 25~50 | 0~1 | 50~75 |
木质素结构中存在复杂的官能团种类,包括苯环上的甲氧基(—OCH3)和酚羟基(Ph—OH),及侧链上的醇羟基(—C—OH)、羰基(—CO)、羧基(—COOH)和双键结构(—CC)。这些官能团导致了木质素化学结构的多样性,并由于其空间位阻效应显著影响了木质素的化学反应活
研究木质素中甲氧基的分布和数量对于揭示木质素结构单元类型及其偶联反应的影响至关重要,其不仅能加深对木质素化学多样性的理解,对于探索其反应性也具有重要意义。如S型基本结构单元的苯环上有2个甲氧基,导致空间位阻增大,限制了偶联反应的发生;G型基本结构单元苯环上的单个甲氧基以及C5位置的官能团空缺,为多样的偶联反应提供了条件;H型基本结构单元的苯环上没有甲氧基,C3和C5位置均可以发生偶联反
木质素中的羟基官能团主要存在于木质素脂肪族和芳香族结构中,并且在木质素高值化应用中起到关键作用。Lyu
木质素基本结构单元主要通过醚键和C—C连接,醚键包括苯丙烷侧链与苯环单元的β-O-4、α-O-4、γ-O-4 键,以及苯环单元间的4-O-5键,苯丙烷侧链间的α-O-β’、α-O-γ’键,这些化学键的特异性导致木质素成为极复杂的天然聚合物。
研究表明,木质素化学键的含量与木质纤维生物质的类型有关,但醚键在木质素化学键中占比超过50%,且阔叶木木质素中的醚键比例高于软木木质
木质素基本结构单元间的主要醚键是β-O-4芳醚键,其含量约占所有醚键的50%,远高于其他醚键。随着β-O-4键含量的增加,木质素的分子结构会变得更具线

图2 ADESs处理木质素过程中β-O-4键断裂反应的主要机
Fig. 2 Main mechanism of the β-O-4 bond cleavage reaction during lignin treatment by ADES
木质素的化学结构对于其分子质量及分布均具有一定的影响。木质素中芳基醚键含量越多,则分子质量越大;木质素中缩合结构越多,则分子质量越大。木质素的异质性使其具有分散性,因此使用不同的HBD和HBA制备的ADESs也会影响木质纤维生物质中提取木质素的分子质量,如
原料 | ADESs种类 | 处理条件 | Mn/(g·mo | Mw/(g·mo | PDI | 参考文献 |
---|---|---|---|---|---|---|
葡萄藤 | 氯化胆碱/乳酸 | 130 ℃,6 h | 2 174 | 3 119 | 1.43 |
[ |
杨木 | 氯化胆碱/草酸 | 80 ℃,5 min | 698 | 847 | 1.21 |
[ |
玉米芯 | 氯化胆碱/乙酸 | 90 ℃,9 h | 1 290 | 2 320 | 1.80 |
[ |
胡桃 | 氯化胆碱/乳酸 | 145 ℃,6 h | 2 460 | 4 200 | 1.70 |
[ |
碱木质素 | 氯化胆碱/草酸 | 120 ℃,6 h | 1 410 | 1 800 | 1.28 |
[ |
Wang

图3 不同ADESs提取C型木质素的分子质
Fig. 3 Molecular weight of catechyl lignin extracted by different ADES
注 ChCl为氯化胆碱,LA为乳酸, FA为甲酸, AA为乙酸,OA为草酸,MA为丙二酸,以下同。
DESs具有绿色、高效、稳定的特点,在木质素高值化应用研究中效果显著。具体而言,DESs展现出高效的木质素分离能力,并能够改善木质素的纯度和结构性质,且具有环境友好等优
类型 | 公式 | 备注 |
---|---|---|
I |
Ca | M=Zn, Sn, Fe, Al, Ga, In |
II |
Ca | M=Cr, Co, Cu, Ni, Fe |
III |
Ca | Z=CONH2, COOH, OH |
IV |
MClx+RZ= MClx- | M=Al, Zn; Z=CONH2, OH |
DESs在木质纤维生物质预处理中,能高效分级和提取化学组

图4 典型的有机盐、有机酸和金属卤化物的结
Fig. 4 Structures of typical organic salts, organic acids, and metal halide
为了探讨不同酸性特征对木质纤维生物质预处理中ADESs作用效果的影响,下文将根据酸性特征按照普通ADESs、Lewis-ADESs和Brønsted-ADESs的3种进行分类综述。
普通ADESs是以能在水中解离出氢离子的物质作为HBD形成的,这类物质既可以是Lewis酸,也可以是Brønsted酸(如乳酸、甲酸和草酸等)。
Zhang

图5 (a)使用ADESs(氯化胆碱/乳酸)从杨树中分离木质素的过
Fig. 5 (a)Isolation of lignin from poplar using ADESs(choline chloride/lactic acid
在Lewis酸碱理论框架下,Lewis-ADESs被定义为将Lewis酸用作HBD并能够接受电子对的物质,因此具有显著的Lewis酸
Wang

图6 (a)Lewis-ADESs处理杂交狼尾草的工艺流程
Fig. 6 (a)Process flowchart for treating hybrid wolfsbane using Lewis-ADES
Zheng
Balasubramanian
在Brønsted-ADESs中,Brønsted酸充当HBD并在反应过程中提供质子(
Yang
在ADESs对木质素的分离和提取过程中,可采用密度泛函理论(DFT)、核磁共振技术(NMR)和傅里叶变换红外光谱(FT-IR)等多种评估工具和分析方法,来探讨ADESs与木质素的相互作用。DFT以量子化学理论为依据,为阐释分子及材料性质提供了一个有效的理论框架;NMR可以直接用于推测ADESs与木质素分子之间的交互作用;而FT-IR则是研究溶剂-木质素相互作用的关键工具,这些分析方法不仅有助于加深对ADESs与木质素相互作用的理解,也有助于揭示化学反应机制。
基于Hohenberg-Kohn定理,电子密度包含了体系基态的全部信息。因此,通过DFT理论确定所有电子体系的物理性质均可以通过电子密度来分析。Kohn-Sham方程进一步发展了这一理论,通过引入辅助的无相互作用电子体系,将复杂的多体问题转化为可解的单体问题。在分析木质素与ADESs之间的相互作用时,通过量化计算能够精确地计算电子密度,为理解木质素与ADESs之间的相互作用提供了坚实的理论基
Lopes

图7 (a)在PPE裂解过程中,pTSA、含氯的pTSA和含溴的pTSA的自由能曲
Fig. 7 (a)Free energy profiles of pTSA, chlorine-containing pTSA, and bromine-containing pTSA during PPE cleavag
Xia
除了DFT理论模拟外,真实溶剂似导体屏蔽模型(COSMO-RS)、量子化学(QC)计算和MD模拟等其他理论模拟,同样能在原子水平上精确描述结构、能量及相互作用,均可以解释ADESs体系中木质素的分级、溶剂化、解聚和聚合机理。
Kamlet-Taft(K-T)参数,即α、β和

图8 ADESs的α、β和
Fig. 8 α, β, and
注 SA为琥珀酸,LeA为乙酰丙酸,AcA为丙烯酸。
FT-IR在表征不同波数下木质素官能团的伸缩振动峰方面发挥着重要作用,在ADESs提取木质素的研究中,FT-IR的应用有助于研究人员深入了解木质素提取过程的化学反应和机理。
在ADESs提取木质素的FT-IR谱图中,显示了多个吸收带,表明其化学结构具有高度的不均匀性。Tian
综上所述,ADESs提取木质素的结构与官能团可以通过FT-IR进行有效表征。为获得更全面的木质素结构分析结果,FT-IR可与其他技术(如NMR和质谱(MS)等)结合使用。多技术综合分析的方法不仅增强了对木质素复杂结构的理解,而且能够帮助研究人员更准确地识别和量化木质素中的官能团,从而为木质素的进一步应用和转化提供了坚实的基础,对于推动木质素相关研究和应用具有重要意义。
NMR在ADESs提取木质素中应用广泛,包
Chen

图9 氯化胆碱与甲酸、乳酸和乙酸组成的ADESs提取的木质素FCL、LCL、ACL 的 2D-HSQC NMR 谱
Fig. 9 2D-HSQC NMR spectra of lignin FCL, LCL, and ACL extracted from ADESs composed of choline chloride with formic acid, lactic acid, and acetic aci
Cheng
综上所述,NMR技术在ADESs提取木质素中的应用,不仅有助于分析木质素的结构和组成,而且可以用于提取过程的监测和优化,以及提取物质的质量控制,对木质素的研究具有重要意义。
ADESs的回收,以及从ADESs中分离提取木质素是ADESs预处理的关键环节之一,对于降低资源消耗和环境污染、实现木质素生物炼制可持续发展至关重要。ADESs具有低毒性和可回收性,因此被广泛认为是“绿色溶剂”,通过旋转蒸发法进行回收和循环利用,可减少资源消耗和环境污
Poy

图10 麦草ADESs预处理及ADESs回收流程
Fig. 10 Flow chart of wheatgrass ADESs pretreatment and ADESs recover
ADESs的回收和高效循环可以有效节约生产成本,最大程度地减少废物的排放,降低对有限资源的依赖。
在生物质预处理提取木质素方面,酸性低共熔溶剂(ADESs)作为一种具有潜力的绿色溶剂表现出显着的效果。目前在研究中,在“木质素优先策略”下,ADESs对生物质木质素提取过程中展现出可持续发展潜力,结果表明,提取后木质素具有低分子质量和高酚羟基含量。ADESs提取木质素的研究理论和评价手段发展较为完整,其中包括:①以Kamlet-Taft氢键理论拟合种类复杂的ADESs体系,并深入掌握ADESs在木质纤维中木质素组分分离及解聚机制;②基于理论建立ADESs溶剂设计方案,有助于优化其性能和应用。同时,对ADESs的毒性和生物相容性进行系统研究,保持绿色溶剂在环境和生物系统中的安全应用;③ADESs对木质素化学结构改性的研究机制,以及在木质素溶剂化过程中的作用。提供ADESs-木质素基功能材料理论基础,实现以木质素为代表性的生物质能源实现高值化利用。
参 考 文 献
SAMUEL R, PU Y, RAMAN B, et al. Structural characterization and comparison of switchgrass ball-milled lignin before and after dilute acid pretreatment[J]. Applied Biochemistry and Biotechnology, 2010, 162: 62-74. [百度学术]
HOU M, WANG L, MA Q, et al. Impact of dilute acid treatment on improving the selectivity of lignin and hemicellulose removals from pre-hydrolysis liquor[J]. Journal of Water Process Engineering, DOI:10.1016/j.jwpe.2023.103667. [百度学术]
ZHENG X, MA X, CHEN L, et al. Lignin extraction and recovery in hydrothermal pretreatment of bamboo[J]. Journal of Bioresources and Bioproducts, 2016, 1(3): 145-151. [百度学术]
WU M, ZHAO D, PANG J, et al. Separation and characterization of lignin obtained by catalytic hydrothermal pretreatment of cotton stalk[J]. Industrial Crops and Products, 2015, 66: 123-130. [百度学术]
MARGELLOU A G, PAPPA C P, PSOCHIA E A, et al. Mild isolation and characterization of surface lignin from hydrothermally pretreated lignocellulosic forestry and agro-industrial waste biomass[J]. Sustainable Chemistry and Pharmacy, DOI:10.1016/j.scp.2023.101056. [百度学术]
CHOI J H, YOU S M, AHN M R, et al. Simultaneous Lignin Extraction and Fibrillation: A Novel Approach for a Continuous Biorefinery[J]. ACS Sustainable Chemistry & Engineering, DOI:10.1021/acssuschemeng.3c06946. [百度学术]
LEHTO J, PAKKANEN H, ALÉN R. Characterization of lignin dissolved during alkaline pretreatment of softwood and hardwood [J]. Journal of Wood Chemistry and Technology, 2015, 35(5): 337-347. [百度学术]
TANG P L, HASSAN O, YUE C S, et al. Lignin extraction from oil palm empty fruit bunch fiber (OPEFBF) via different alkaline treatments [J]. Biomass Conversion and Biorefinery, 2020, 10: 125-138. [百度学术]
SUN S C, SUN D, LI H Y, et al. Revealing the topochemical and structural changes of poplar lignin during a two-step hydrothermal pretreatment combined with alkali extraction [J]. Industrial Crops and Products, DOI:10.1016/j.indcrop.2021.113588. [百度学术]
KOHLI K, KATUWAL S, BISWAS A, et al. Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic solvents [J]. Bioresource Technology, DOI:10.1016/j.biortech.2020.122897. [百度学术]
WANG Q, XIAO S, SHI S Q, et al. Microwave-assisted formic acid extraction for high-purity cellulose production [J]. Cellulose, DOI:10.1007/s10570-019-02516-8. [百度学术]
LI M F, SUN S N, XU F, et al. Microwave-assisted organic acid extraction of lignin from bamboo: Structure and antioxidant activity investigation [J]. Food Chemistry, DOI:10.1016/j.foodchem.2012. 03.037. [百度学术]
DINH VU N, THI TRAN H, BUI N D, et al. Lignin and cellulose extraction from Vietnam’s rice straw using ultrasound-assisted alkaline treatment method [J]. International Journal of Polymer Science, DOI:10.1155/2017/1063695. [百度学术]
NGADI N, RUSLI N S. Ultrasound-assisted extraction of lignin from oil palm frond [J]. Jurnal Teknologi (Sciences and Engineering), 2014, 67(4): 67-70. [百度学术]
MONTEIL-RIVERA F, HUANG G H, PAQUET L, et al. Microwave-assisted extraction of lignin from triticale straw: Optimization and microwave effects [J]. Bioresource Technology, DOI:10.1016/j.biortech.2011.11.079. [百度学术]
ZHANG B, LIU X, BAO J. High solids loading pretreatment: The core of lignocellulose biorefinery as an industrial technology—An overview [J]. Bioresource Technology, DOI:10.1016/j.biortech.2022.128334. [百度学术]
HONG S, SHEN X J, XUE Z, et al. Structure-function relationships of deep eutectic solvents for lignin extraction and chemical transformation [J]. Green Chemistry, DOI:10.1039/d0gc02439b. [百度学术]
DAI Z, ANSALONI L, DENG L. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review [J]. Green Energy & Environment, DOI:10.1016/j.gee.2016.08.001. [百度学术]
汪心娉, 余 璟, 朱瑞琦,等. 低共熔溶剂选择性溶解木质纤维原料的研究进展 [J]. 中国造纸学报, 2021,36(2): 79-86. [百度学术]
WANG X P, YU J, ZHU R Q, et al. Research Progress on Selective Dissolution of Lignocellulosic Materials in Deep Eutectic Solvents[J]. Transactions of China Pulp and Paper, 2021,36(2): 79-86. [百度学术]
OH Y, PARK S, JUNG D, et al. Effect of hydrogen bond donor on the choline chloride-based deep eutectic solvent-mediated extraction of lignin from pine wood [J]. International Journal of Biological Macromolecules, DOI:10.1016/j.ijbiomac.2020.09.145. [百度学术]
WANG W, LEE D J. Lignocellulosic biomass pretreatment by deep eutectic solvents on lignin extraction and saccharification enhancement: A review [J]. Bioresource Technology, DOI:10.1016/j.biortech.2021.125587. [百度学术]
QIN H, HU X, WANG J, et al. Overview of acidic deep eutectic solvents on synthesis, properties and applications [J]. Green Energy & Environment, 2020, 5(1): 8-21. [百度学术]
KAZZAZ A E, FATEHI P. Technical lignin and its potential modification routes: A mini-review [J]. Industrial Crops and Products, DOI:10.1016/j.indcrop.2020.112732. [百度学术]
BAI Y, ZHANG X F, WANG Z, et al. Deep eutectic solvent with bifunctional Brønsted-Lewis acids for highly efficient lignocellulose fractionation [J]. Bioresource Technology, DOI:10.1016/j.biortech. 2022.126723. [百度学术]
LIU Y, LI K. Preparation and Characterization of Demethylated Lignin-polyethylenimine Adhesives [J]. The Journal of Adhesion, 2006, 82(6): 593-605. [百度学术]
NONAKA H, TOMONO T, NAGASHIMA Y, et al. Preparation of Formed Coke for Blast Furnace Using Kraft Lignin as a Binder [J]. ISIJ International, DOI:10.2355/isijinternational.isijint-2023-046. [百度学术]
CHEN Z, LU M, QIAN Y, et al. Ultra-low Dosage Lignin Binder for Practical Lithium-sulfur Batteries [J]. Advanced Energy Materials, DOI:10.1002/aenm.202300092. [百度学术]
ZHOU M, QIU X, YANG D, et al. High-performance dispersant of coal-water slurry synthesized from wheat straw alkali lignin [J]. Fuel Processing Technology, DOI:10.1016/j.fuproc.2006.11.004. [百度学术]
KALLIOLA A, KANGAS P, WINBERG I, et al. Oxidation process concept to produce lignin dispersants at a kraft pulp mill [J]. Nordic Pulp & Paper Research Journal, 2022, 37(2): 394-404. [百度学术]
YANG J, WANG X, LIU H. Lignins and Lignin Derivatives as Dispersants for Copper Phthalocyanine Pigment Nanoparticles [J]. ACS Sustainalde Chemistry & Engineering, DOI:10.1021/acssuschemeng.2c04657. [百度学术]
SCHMIDT B V, MOLINARI V, ESPOSITO D, et al. Lignin-based polymeric surfactants for emulsion polymerization [J]. Polymer, DOI:10.1016/j.polymer.2017.02.036. [百度学术]
ZHOU M, WANG W, YANG D, et al. Preparation of a new lignin-based anionic/cationic surfactant and its solution behaviour [J]. RSC Advances, DOI:10.1039/c4ra10524a. [百度学术]
BERTELLA S, BERNARDES F M, DE ANGELIS G, et al. Extraction and Surfactant Properties of Glyoxylic Acid-functionalized Lignin [J]. ChemSusChem, DOI:10.1002/cssc.2022 00270. [百度学术]
ZHAO S, LI J, YAN Z, et al. Preparation of lignin-based filling antioxidant and its application in styrene-butadiene rubber [J]. Journal of Applied Polymer Science, DOI:10.1002/app.51281. [百度学术]
CHUNG J Y, HWANG U, KIM J, et al. Amine-functionalized lignin as an eco-friendly antioxidant for rubber compounds [J]. ACS Sustainable Chemistry & Engineering, DOI:10.1021/acssuschemeng.2c05878. [百度学术]
LIU S, CHENG X. Application of lignin as antioxidant in styrene butadiene rubber composite[C]//AIP Conference Proceedings. American Institute of Physics, 2010, 1251(1): 344-347. [百度学术]
ABU-OMAR M M, BARTA K, BECKHAM G T, et al. Guidelines for performing lignin-first biorefining [J]. Energy & Environmental Science, 2021, 14(1): 262-292. [百度学术]
LIAO J J, LATIF N H A, TRACHE D, et al. Current advancement on the isolation, characterization and application of lignin [J]. International Journal of Biological Macromolecules, 2020, 162: 985-1024. [百度学术]
SUN H, WANG G, GE J, et al. Reduction of lignin heterogeneity for improved catalytic performance of lignin nanosphere supported Pd nanoparticles [J]. Industrial Crops and Products, DOI:10.1016/j.indcrop.2022.114685. [百度学术]
PANG T, WANG G, SUN H, et al. Lignin fractionation: Effective strategy to reduce molecule weight dependent heterogeneity for upgraded lignin valorization [J]. Industrial Crops and Products, DOI:10.1016/j.indcrop.2021.113442. [百度学术]
田 锐, 胡亚洁, 刘巧玲,等. 低共熔溶剂在木质纤维生物质预处理领域的研究进展 [J]. 中国造纸, 2022, 41(3): 78-86. [百度学术]
TIAN R, HU Y J, LIU Q L, et al. Research Progress of Deep Eutectic Solvents in Lignocellulosic Biomass Pretreatment[J]. China Pulp & Paper, 2022, 41(3): 78-86. [百度学术]
PANDEY M P, KIM C S. Lignin Depolymerization and Conversion: A Review of Thermochemical Methods [J]. Chemical Engineering & Technology, 2011, 34(1): 29-41. [百度学术]
SUN R C. Lignin Source and Structural Characterization [J]. ChemSusChem, DOI:10.1002/cssc.202001324. [百度学术]
ALVAREZ-VASCO C, MA R, QUINTERO M, et al. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): A source of lignin for valorization [J]. Green Chemistry, 2016, 18(19): 5133-5141. [百度学术]
LI C, ZHAO X, WANG A, et al. Catalytic Transformation of Lignin for the Production of Chemicals and Fuels[J]. Chemical Reviews, 2015, 115(21): 11559-11624. [百度学术]
邱卫华, 陈洪章. 木质素的结构、 功能及高值化利用[J]. 纤维素科学与技术, 2006, 14(1): 52-59. [百度学术]
QIU W H, CHEN H Z. Structure, Function and Higher Value Application of Lignin[J]. Journal of Cellulose Science and Technology, 2006, 14(1): 52-59. [百度学术]
LIU C, HU J, ZHANG H, et al. Thermal conversion of lignin to phenols: Relevance between chemical structure and pyrolysis behaviors [J]. Fuel, 2016, 182: 864-870. [百度学术]
WANG S, WANG K, LIU Q, et al. Comparison of the pyrolysis behavior of lignins from different tree species [J]. Biotechnology Advances, 2009, 27(5): 562-567. [百度学术]
LYU G, LI T, JI X, et al. Characterization of Lignin Extracted from Willow by Deep Eutectic Solvent Treatments [J]. Polymers, DOI:10.3390/polym10080869. [百度学术]
CSICSERY S M. Catalysis by shape selective zeolites-science and technology [J]. Pure & Applied Chemistry, DOI:10.1351/pac1986580 60841. [百度学术]
BARRERA-GARCI A V D, CHASSAGNE D, PAULIN C, et al. Interaction Mechanisms Between Guaiacols and Lignin: The Conjugated Double Bond Makes the Difference [J]. Langmuir, 2011, 27(3): 1038-1043. [百度学术]
CHAKAR F S, RAGAUSKAS A J. Review of current and future softwood kraft lignin process chemistry [J]. Industrial Crops and Products, 2004, 20(2): 131-141. [百度学术]
ABASOV S I, BABAYEVA F A, ZARBALIYEV R R, et al. Low-temperature catalytic alkylation of benzene by propane [J]. Applied Catalysis A, 2003, 251(2): 267-274. [百度学术]
MEI Q, SHEN X, LIU H, et al. Selectively transform lignin into value-added chemicals [J]. Chinese Chemical Letters, 2019, 30(1): 15-24. [百度学术]
SANTOS R B, CAPANEMA E A, BALAKSHIN M Y, et al. Lignin Structural Variation in Hardwood Species [J]. Journal of Agricultural and Food Chemistry, 2012, 60(19): 4923-4930. [百度学术]
QIN Z, WANG X D, LIU H M, et al. Structural characterization of Chinese quince fruit lignin pretreated with enzymatic hydrolysis [J]. Bioresource Technology, 2018, 262: 212-220. [百度学术]
ZHU Y, YANG T X, QI B K, et al. Acidic and alkaline deep eutectic solvents (DESs) pretreatment of grapevine: Component analysis, characterization, lignin structural analysis, and antioxidant properties [J]. International Journal of Biological Macromolecules, DOI:10.1016/j.ijbiomac.2023.123977. [百度学术]
LIU Y, CHEN W, XIA Q, et al. Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent [J]. ChemSusChem, 2017, 10(8): 1692-1700. [百度学术]
LIU W, NING C, LI Z, et al. Revealing structural features of lignin macromolecules from microwave-assisted carboxylic acid-based deep eutectic solvent pretreatment [J]. Industrial Crops and Products, DOI:10.1016/j.indcrop.2023.116342. [百度学术]
LI W, AMOS K, LI M, et al. Fractionation and characterization of lignin streams from unique high-lignin content endocarp feedstocks [J]. Biotechnology for Biofuels, 2018, 11: 1-14. [百度学术]
HONG S, SHEN X J, PANG B, et al. In-depth interpretation of the structural changes of lignin and formation of diketones during acidic deep eutectic solvent pretreatment [J]. Green Chemistry, 2020, 22(6): 1851-1858. [百度学术]
WANG S, SU S, XIAO L P, et al. Catechyl Lignin Extracted from Castor Seed Coats Using Deep Eutectic Solvents: Characterization and Depolymerization [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7031-7038. [百度学术]
XU J, ZHOU P, LIU X, et al. Tandem Character of Liquid Hot Water and Deep Eutectic Solvent to Enhance Lignocellulose Deconstruction [J]. ChemSusChem, 2021, 14(13): 2740-2748. [百度学术]
RAGAUSKAS A J, BECKHAM G T, BIDDY M J, et al. Lignin valorization: Improving lignin processing in the biorefinery [J]. Science, DOI:10.1126/science.1246843. [百度学术]
SMITH E L, ABBOTT A P, RYDER K S. Deep Eutectic Solvents (DESs) and Their Applications [J]. Chemical Reviews, 2014, 114(21): 11060-11082. [百度学术]
ERAGHI KAZZAZ A, FATEHI P. Technical lignin and its potential modification routes: A mini-review [J]. Industrial Crops and Products, DOI:10.1016/j.indcrop.2020.112732. [百度学术]
ZHANG C W, XIA S Q, MA P S. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents [J]. Bioresource Technology, 2016, 219: 1-5. [百度学术]
CHEN Y, ZHANG L, YU J, et al. High-purity lignin isolated from poplar wood meal through dissolving treatment with deep eutectic solvents [J]. Royal Society Open Science, DOI:10.1098/rsos.181757. [百度学术]
HONG S, LI H Y, SHEN X J, et al. Unveiling the Migration and Transformation Mechanism of Lignin in Eucalyptus During Deep Eutectic Solvent Pretreatment [J]. ChemSusChem, DOI:10.1002/cssc.202200553. [百度学术]
STUDER M H, DEMARTINI J D, DAVIS M F, et al. Lignin content in natural Populus variants affects sugar release [J]. Proceedings of the National Academy of Sciences, 2011, 108(15): 6300-6305. [百度学术]
LI H Y, WANG C Z, CHEN X, et al. Structural elucidation of Eucalyptus lignin and its dynamic changes in the cell walls during an integrated process of ionic liquids and successive alkali treatments [J]. Bioresource Technology, 2016, 222: 175-181. [百度学术]
JENSEN W B. The Lewis acid-base definitions: Astatus report [J]. Chemical Reviews, 1978, 78(1): 1-22. [百度学术]
WANG Z K, HONG S, WEN J L, et al. Lewis Acid-facilitated Deep Eutectic Solvent (DES) Pretreatment for Producing High-purity and Antioxidative Lignin [J]. ACS Sustainable Chemistry & Engineering, 2019, 8(2): 1050-1057. [百度学术]
TANG X, ZUO M, LI Z, et al. Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents [J]. ChemSusChem, 2017, 10(13): 2696-2706. [百度学术]
ZHENG J, CHEN L, QIU X, et al. Structure investigation of light-colored lignin extracted by Lewis acid-based deep eutectic solvent from softwood [J]. Bioresource Technology, DOI:10.1016/j.biortech.2023.129458. [百度学术]
BALASUBRAMANIAN S, VENKATACHALAM P. Valorization of rice husk agricultural waste through lignin extraction using acidic deep eutectic solvent [J]. Biomass and Bioenergy, DOI:10.1016/j.biombioe.2023.106776. [百度学术]
HU M, LI X, WANG X, et al. The dawn of aqueous deep eutectic solvents for lignin extraction [J]. Green Chemistry, DOI:10.1039/d3gc03563h. [百度学术]
YANG J, ZHANG W, TANG Y, et al. Mild pretreatment with Brønsted acidic deep eutectic solvents for fractionating β-O-4 linkage-rich lignin with high sunscreen performance and evaluation of enzymatic saccharification synergism [J]. Bioresource Technology, DOI:10. 1016/j.biortech.2022.128258. [百度学术]
SUN X, ZHOU Z, TIAN D, et al. Acidic deep eutectic solvent assisted mechanochemical delignification of lignocellulosic biomass at room temperature [J]. International Journal of Biological Macromolecules, DOI:10.1016/j.ijbiomac.2023.123593. [百度学术]
CHEN Y, MA C, TANG W, et al. Comprehensive understanding of enzymatic saccharification of Betaine: Lactic acid-pretreated sugarcane bagasse [J]. Bioresource Technology, DOI:10.1016/j.biortech.2023.129485. [百度学术]
WOICIECHOWSKI A L, NETO C J D, DE S V L P, et al. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance—Conventional processing and recent advances [J]. Bioresource Technology, DOI:10.1016/j.biortech.2020.122848. [百度学术]
HUO D, SUN Y, YANG Q, et al. Selective degradation of hemicellulose and lignin for improving enzymolysis efficiency via pretreatment using deep eutectic solvents [J]. Bioresource Technology, DOI:10.1016/j.biortech.2023.128937. [百度学术]
LIU Y, ZHANG C, LIU Z, et al. Supervised learning of a chemistry functional with damped dispersion [J]. Nature Computational Science, 2023, 3(1): 48-58. [百度学术]
LOPES D C A M, GOMES J R, COUTINHO J A, et al. Novel insights into biomass delignification with acidic deep eutectic solvents: Amechanistic study of β-O-4 ether bond cleavage and the role of the halide counterion in the catalytic performance [J]. Green Chemistry, 2020, 22(8): 2474-2487. [百度学术]
XIA Q, LIU Y, MENG J, et al. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass [J]. Green Chemistry, 2018, 20(12): 2711-2721. [百度学术]
XU H, PENG J, KONG Y, et al. Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: A review [J]. Bioresource Technology, DOI:10.1016/j.biortech. 2020.123416. [百度学术]
ZHANG L, YU H, LIU S, et al. Kamlet-Taft Parameters of Deep Eutectic Solvents and Their Relationship with Dissolution of Main Lignocellulosic Components [J]. Industrial & Engineering Chemistry Research, 2023, 62(29): 11723-11734. [百度学术]
TIAN D, GUO Y, HU J, et al. Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity [J]. International Journal of Biological Macromolecules, 2020, 142: 288-297. [百度学术]
CHEN Z, REZNICEK W D, WAN C. Deep eutectic solvent pretreatment enabling full utilization of switchgrass [J]. Bioresource Technology, 2018, 263: 40-48. [百度学术]
YANG H, YOO C G, MENG X, et al. Structural changes of lignins in natural Populus variants during different pretreatments [J]. Bioresource Technology, DOI:10.1016/j.biortech.2019.122240. [百度学术]
LYU G, WU Q, LI T, et al. Thermochemical properties of lignin extracted from willow by deep eutectic solvents (DES) [J]. Cellulose, 2019, 26(15): 8501-8511. [百度学术]
LYU G, LI T, JI X, et al. Characterization of lignin extracted from willow by deep eutectic solvent treatments [J]. Polymers, DOI:10.3390/polym10080869. [百度学术]
SHEN X J, WEN J L, MEI Q Q, et al. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization [J]. Green Chemistry, 2019, 21(2): 275-283. [百度学术]
SOARES B, DA C L A M, SILVESTRE A J, et al. Wood delignification with aqueous solutions of deep eutectic solvents [J]. Industrial Crops and Products, DOI:10.1016/j.indcrop.2020.113128. [百度学术]
CHEN Z, BAI X, ZHANG H, et al. Insights into structural changes of lignin toward tailored properties during deep eutectic solvent pretreatment [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9783-9793. [百度学术]
LIU W, NING C, LI Z, et al. Revealing structural features of lignin macromolecules from microwave-assisted carboxylic acid-based deep eutectic solvent pretreatment [J]. Industrial Crops and Products, DOI:10.1016/j.indcrop.2023.116342. [百度学术]
CHENG J, HUANG C, ZHAN Y, et al. Effective biomass fractionation and lignin stabilization using a diol DES system [J]. Chemical Engineering Journal, DOI:10.1016/j.cej.2022.136395. [百度学术]
SHARMA V, TSAI M L , CHEN C W, et al. Deep eutectic solvents as promising pretreatment agents for sustainable lignocellulosic biorefineries: A review [J]. Bioresource Technology, DOI:10.1016/j.biortech.2022.127631. [百度学术]
POY H, LLADOSA E, ARCÍS A, et al. Microwave-assisted ternary deep eutectic solvent pretreatment for improved rice straw saccharification under mild pretreatment conditions [J]. Industrial Crops and Products, DOI:10.1016/j.indcrop.2023.117639. [百度学术]
WANG G, HUANG M, LI F, et al. Insights into the poplar cell wall deconstruction following deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin valorization [J]. International Journal of Biological Macromolecules, DOI:10.1016/j.ijbiomac.2023.127673. [百度学术]
LOU R, ZHANG X. Evaluation of pretreatment effect on lignin extraction from wheat straw by deep eutectic solvent [J]. Bioresource Technology, DOI:10.1016/j.biortech.2021.126174. [百度学术]
HUANG Y, XU Y, ZHU Y, et al. Improved glucose yield and concentration of sugarcane bagasse by the pretreatment with ternary deep eutectic solvents and recovery of the pretreated liquid [J]. Bioresource Technology, DOI:10.1016/j.biortech. 2022.128186. CPP [百度学术]