摘要
本研究以硫酸盐法制浆稀黑液(BL)为原料,基于有机预处理与催化电解技术,分离黑液中小分子有机组分和木质素、回收碱,进而将木质素解聚成烃类燃料,以实现黑液燃料性能的提升。结果表明,有机预处理与催化电解的组合技术最高可回收约98%的碱和89.1%的总木质素,且经电化学还原处理后,木质素液化率可达95.0%。黑液提质后,燃料(BLUF-3)的热值达35.1 MJ/kg,相比BL提升了132%,且具有低表观活化能(23.4 kJ/mol)和高指前因子(2.68×1
在“碳达峰”和“碳中和”的目标下,优化能源结构和降低自身能耗是造纸行业发展的重要方向。黑液(black liquor,BL)是制浆过程中产生的废弃物,黑液碱回收系统需消耗蒸汽、电能、助燃重油等,其能耗约占制浆造纸工艺的20%,总碳排放量约占纸浆生产过程的40
黑液具有较高的pH值、电导率和木质素含量,是理想的电解介质,通过向黑液中施加一定电压,可回收黑液中的高附加值组分,如木质素、氢气或羧酸
综上所述,与气化或热解等技术改变黑液燃料形式、运行条件不同,以提升黑液燃料品质为目标,选择更温和且产物可控的电解技术,可更加高效、清洁地利用黑液。而针对直接电解黑液仅可回收部分碱和木质素、纤维素、半纤维素的降解物的情况,本研究采取有机萃取与电解协同的方式逐步分离黑液中碱、有机小分子组分和木质素,以提高各组分回收利用效率。鉴于碱木质素内部交联度高,难以催化电解,本研究采取有机预处理靶向断裂木质素C—O键,以降低木质素交联度,提高反应活性,并通过预处理与催化电解的组合技术将木质素解聚并加氢脱氧,从而实现黑液向高品质燃料的转变,并期望有助于改善黑液利用的高能耗、低效率、高碳排放的现状,对节约传统黑液蒸发浓缩的能耗和设备成本提供一定的指导。
制浆黑液(初始黑液中固形物质量分数约10.1%),来自广西某硫酸盐桉木浆生产线。二氯甲烷、乙二醇(EG)、硫醇(BME)、四氢呋喃、乙酸乙酯、氘代二甲基亚砜(DMSO-d6)、氢氧化钠、硫酸、过氧化氢溶液(H2O2,质量分数30%)、磷酸盐缓冲液、碳酸钾、甲醇、无水硫酸钠,均为分析纯,购自南宁博宇实验设备有限公司。铂丝、镍、石墨电极,由上海勒茗生物科技有限公司提供。碳毡(CFC)电极,由上海乐铭生物技术有限公司提供。
有机预处理协同催化电解提升黑液燃料性能的流程如

图1 实验流程图
Fig. 1 Experimental flow chart
取100 mL黑液,采用0.45 μm尼龙滤膜进行过滤,除去黑液中固体残渣后,置于分液漏斗内,加入等体积的有机溶剂二氯甲烷,不断搅拌,使有机溶剂与黑液充分混合以完成萃取。萃取后的混合溶液静置6 h后分离出有机相,用0.22 μm尼龙滤膜过滤,并添加无水硫酸钠去除有机相中的水分,滤除无水硫酸钠后对有机相进行旋转蒸发,得到黑液萃取油(BLEO)。采用石墨作阳极、镍板作阴极的电池,同时电池利用处理后的阳离子Nafion膜隔开电解池阴阳2室,在阳极室填装黑液萃取后的无机相,阴极室则为0.05 mol/L的NaOH溶液,在恒定电压10 V、阳极室搅拌速率100 r/min的条件下进行电解,电解至无木质素析出,回收木质素及碱。
取1.2.1中回收的木质素50 mg,溶解于25 mL的乙二醇溶液后,加入体积比为25∶1的H2O2和BME混合液,将样品置于50 mL密封管中,采用油浴加热的方式将密封管置于100 ℃的环境中保温8 h,然后冷却至室温。电化学还原实验在H型电化学电池中开展,该电池用Nafion 117膜隔开阴阳2室,2室均配有磁力搅拌器,在室温下组装。阳极室(铂丝阳极)采用50 mL的磷酸盐缓冲液(pH值为8),CFC电极充当阴极,将通过有机预处理的木质素溶液样品(50 mL)加入阴极室,在电流密度10 mA/c
将1.2.1中制备的BLEO与LHL按一定体积比(2∶1、1∶1、1∶2和1∶3)混合作为黑液提质后燃料(BLUF),依次命名为BLUF-1、BLUF-2、BLUF-3和BLUF-4。取0.5 mg的BLUF,采用同步热重分析仪(TG,STA 449F5,德国NETZSCH公司)测定其燃烧特性。
如
() | (1) |
() | (2) |
()= | (3) |
BLEO及LHL元素分析:利用元素分析仪(EA3000,意大利 Eurovector公司)对BLEO及LHL进行元素分析,并按照Dulong公式进行热值计
BLEO组分分析:将BLEO样品(1 μL)注入气相色谱质谱联用仪(GC-MS,Agilent7890B/5975C,美国Agilent公司),选用DB-5色谱柱,GC条件为:初始温度50 °C,持续2 min,以15 ℃/min的升温速度升至200 ℃,并保持3 min,再以10 ℃/min的升温速度升至300 ℃,保持6 min。
燃烧特性指数分析:采用同步热重分析仪在30~800 ℃的温度范围内,空气气氛下,升温速率10 ℃/min,进行热重分析。采用综合可燃指数(S)评价BLEO和LHL的燃烧特
(4) |
式中,DTGmax和DTGmean分别指最大质量损失速率和平均质量损失速率,%/min;Ti为点火温度,℃;Tb为燃尽温度(质量分数降至1%时的温度),℃。其中,Ti的确定方式如下:垂直线经过DTG曲线的最大值,与TG曲线相交于点D,然后在点D做1条TG曲线的切线和1条平行于x轴的直线穿过点B(TG曲线中脱挥发分开始的点),2条直线的交点为点C,对应的温度为Ti;Tb可利用TG-DTG曲线确定。
采用单个扫描速率分析法中的Coats-Redfern积分法,对样品的单条TG-DTG曲线进行分析,通过求解得到样品相关的燃烧动力学参数。根据TG-DTG曲线,通过
α=×100% | (5) |
式中,m0为样品失水结束时的质量,g;m1为样品反应结束时的质量,g;mt为样品t时刻的质量,g。
根据文献[
| (6) |
式中,A为指前因子,mi
(7) |
(8) |
令,或 。
由热重实验数据可以计算得到Y,再以X为横坐标画图,得到一条曲线,T的取值范围为[Ti,Tb]。对曲线进行线性拟合,根据拟合直线的斜率可以计算得到反应活化能E,由截距可以计算得到指前因子A。
对实验过程物料进行测量,结果列于
阶段 | 组分 | 含量/(g· |
---|---|---|
进样 | 黑液固形物 | 98.7 |
木质素 | 42.3 | |
碱 | 15.2 | |
有机萃取分离电解 | 萃取相有机小分子(BLEO) | 6.71 |
回收碱(NaOH为主) | 14.9 | |
木质素沉淀 | 37.7 | |
木质素有机预处理及催化电解 | 木质素加氢液化产物(LHL) | 35.8 |
木质素残渣 | 1.9 |
采用GC-MS对BLEO组分进行分析,结果如

图2 BLEO组分GC-MS分析
Fig. 2 GC-MS analysis of BLEO components
将黑液、黑液提取碱木质素、BLEO、LHL及BLUF分别进行元素分析,检测其产物的O/C和H/C(质量比),并计算其高位热值(HHV),结果列于
样品 | 元素含量/% | H/C | O/C | HHV/ (MJ·k | ||||
---|---|---|---|---|---|---|---|---|
C | H | O | N | S | ||||
BL | 47.4 | 4.55 | 45.0 | 1.21 | 1.11 | 0.10 | 0.97 | 15.1 |
木质素 | 56.7 | 5.42 | 34.8 | 1.12 | 1.96 | 0.10 | 0.61 | 21.2 |
LHL | 67.0 | 9.54 | 22.5 | 0.54 | 0.36 | 0.14 | 0.34 | 32.5 |
BLEO | 64.5 | 6.81 | 26.3 | 1.25 | 1.13 | 0.11 | 0.41 | 27.0 |
BLUF-1 | 63.3 | 7.39 | 27.4 | 1.01 | 0.87 | 0.12 | 0.43 | 27.3 |
BLUF-2 | 66.7 | 8.72 | 22.9 | 0.90 | 0.75 | 0.13 | 0.34 | 31.1 |
BLUF-3 | 73.0 | 9.37 | 16.4 | 0.66 | 0.58 | 0.13 | 0.24 | 35.1 |
BLUF-4 | 70.0 | 8.32 | 20.6 | 0.67 | 0.42 | 0.12 | 0.29 | 32.0 |
如
对木质素、LHL及BLEO进行热重分析实验,得到样品燃烧的TG曲线,将TG曲线对时间求一阶导数,得到样品燃烧的DTG曲线,结果如

图3 不同样品的TG和DTG曲线
Fig. 3 TG and DTG curves of different samples
如

图4 BLUF的TG和DTG曲线
Fig. 4 TG and DTG curves of BLUF
根据燃烧特征参数的分析方法,获得对BLUF-3的TG-DTG曲线燃烧特征参数的求解分析结果,如

图5 BLUF-3的燃烧特征参数
Fig. 5 Combustion characteristic parameters of BLUF-3
由
样品 | Ti /℃ | Tb/℃ | Tm /℃ | DTGmax/(%·mi | DTGmean/(%·mi | S/1 | 数据来源 |
---|---|---|---|---|---|---|---|
桉木黑液 | 757.21 | 943.79 | 814.55 | 5.43 | 4.17 | 4.18 |
[ |
碱木质素 | 283.57 | 582.64 | 371.86 | 7.45 | 5.61 | 89.21 |
[ |
甘蔗渣生物油 | 154 | 234 | 136 | 8.77 | 7.92 | 558.34 |
[ |
稻壳生物油 | 366 | 450 | 400 | 8.93 | 8.76 | 57.70 |
[ |
BLUF-3 | 82.36 | 152.62 | 123.52 | 10.8 | 7.69 | 804.59 | 本研究 |
根据
根据燃烧动力学的分析方法,结合燃烧过程及燃烧的TG曲线与DTG曲线,对BLUF-3进行燃烧动力学分析。因主要探讨燃烧热解区域内的动力学模型,所以设定温度区间为50~500 ℃,以减少低沸点物质的影响和消除高沸点碱金属盐的影响。将n从1开始,分别代入
样品 | T/℃ | E | A | R | 参考文献 |
---|---|---|---|---|---|
/(kJ·mo | /1 | ||||
桉木黑液 | 223~523 | 73.7 | 1.54 | 0.978 |
[ |
碱木质素 | 207~435 | 48.0 | 0.67 | 0.997 |
[ |
甘蔗渣生物油 | 77~350 | 41.5 | 2.31 | 0.999 |
[ |
稻壳生物油 | 280~430 | 49.5 | 1.21 | 0.984 |
[ |
BLUF-3 | 82~152 | 23.4 | 2.68 | 0.998 | 本研究 |
由
本研究以硫酸盐法制浆黑液为原料,基于有机萃取与电化学处理分离黑液中可回用组分,从而节约碱回收工段的蒸汽消耗;并将黑液中所提取出的木质素进一步催化电解加氢脱氧提升其燃料品质以提高黑液的燃烧效率。
3.1 该技术最高可回收约98%的碱和89.1%的总木质素;木质素经电解处理后木质素液化率可达95.0%,可以尽可能利用黑液中生物质组分,提高其利用率。
3.2 黑液提质燃料油热值达35.1 MJ/kg,明显高于原黑液固形物的热值,且具备高H/C比和低H/O比,明显发生的加氢脱氧反应促进了燃料热值提升。
3.3 黑液提质燃料油的着火温度(82.36 ℃)和燃尽温度(152.62 ℃)均低于黑液和碱木质素及其他生物油,表明黑液提质燃料的可燃性能高。黑液提质后的燃料(黑液萃取油与木质素加氢液化产物体积比为1∶2)具备更低的表观活化能E(23.4 kJ/mol)和更高的指前因子 A(2.68×1
参考文献
景晓玮, 赵庆建. 基于生产过程的制浆造纸企业碳排放核算研究[J]. 中国林业经济, 2019(6): 9-12,54. [百度学术]
JING X W, ZHAO Q J. Research on carbon emission accounting of pulp and paper enterprises based on production process[J]. China Forestry Economics, 2019(6): 9-12,54. [百度学术]
MACEK A. Research on combustion of black-liquor drops[J]. Progress in Energy and Combustion Science, 1999, 25(3): 275-304. [百度学术]
宋佳翼, 范中秋, 李晨曦, 等. 硫酸盐法制浆企业的碳排放及碳捕获与利用技术[J]. 中国造纸, 2022, 41(5): 70-79. [百度学术]
SONG J Y, FAN Z Q, LI C X, et al. Carbon Emission,Carbon Capture and Utilization Technologies of Kraft Pulping Enterprises[J]. China Pulp & Paper, 2022, 41(5): 70-79. [百度学术]
DAHLQUIST E, NAQVI M, THORIN E, et al. Experimental and numerical investigation of pellet and black liquor gasification for polygeneration plant[J]. Applied Energy, 2017, 204: 1055-1064. [百度学术]
ERIKSSON H, HARVEY S. Black liquor gasification—Consequences for both industry and society[J]. Energy, 2004, 29(4): 581-612. [百度学术]
HEERES A, SCHENK N, MUIZEBELT I, et al. Synthesis of Bio-aromatics from Black Liquors Using Catalytic Pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3472-3480. [百度学术]
SCRCHAROENCHAIKUL V. Assessment of black liquor gasification in supercritical water[J]. Bioresource Technology, 2009, 100(2): 638-643. [百度学术]
OLIVEIRA R C P, BUIJNSTERS J G, MATEUS M, et al. On the electrooxidation of kraft black liquor on boron-doped diamond[J]. Journal of Electroanalytical Chemistry, DOI:10.1016/j.jelechem.2022.116151. [百度学术]
王大伟, 史建波, 郭 靖, 等. 竹浆黑液碱回收技术现状及发展方向[J]. 中国造纸, 2022, 41(8): 70-74. [百度学术]
WANG D W, SHI J B, GUO J, et al. Present Situation and Development Trend of Alkali Recovery Technology from Bamboo Pulp Black Liquor[J].China Pulp & Paper, 2022, 41(8): 70-74. [百度学术]
NONG G, ZHOU Z, WANG S. Generation of Hydrogen, Lignin and Sodium Hydroxide from Pulping Black Liquor by Electrolysis[J]. Energies, DOI: 10.3390/en9010013. [百度学术]
KUMAR H, ALEN R. Recovery of aliphatic low-molecular-mass carboxylic acids from hardwood kraft black liquor[J]. Separation and Purification Technology, 2015, 142: 293-298. [百度学术]
KUMAR H, ALEN R. Partial Recovery of Aliphatic Carboxylic Acids and Sodium Hydroxide from Hardwood Black Liquor by Electrodialysis[J]. Industrial & Engineering Chemistry Research, 2014, 53(22): 9464-9470. [百度学术]
BELO I C, OLIVEIRA R C P, MATEUS M, et al. Development of a Black Liquor Electrolyzer for Lignin Extraction[J]. ECS Transactions, DOI: 10.1149/08604.0003ecst. [百度学术]
NUNEZ D, OULEGO P, COLLADO S, et al. Recovery of organic acids from pre-treated kraft black liquor using ultrafiltration and liquid-liquid extraction[J]. Separation and Purification Technology, DOI: 10.1016/j.seppur.2021.120274. [百度学术]
BAGH F, RAY S, SETH R. Optimizing lignin extraction from kraft black liquor using protic ionic liquids[J]. Biomass & Bioenergy, DOI: 10.1016/j.biombioe.2021.106249. [百度学术]
WEI Y, LEI H, WANG L, et al. Liquid-liquid Extraction of Biomass Pyrolysis Bio-oil[J]. Energy & Fuels, 2014, 28(2): 1207-1212. [百度学术]
WANG H, WANG H, KUHN E, et al. Production of Jet Fuel-range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts[J]. ChemSusChem, 2018, 11(1): 285-291. [百度学术]
XIANG Z, HAN W, DENG J, et al. Photocatalytic Conversion of Lignin into Chemicals and Fuels[J]. ChemSusChem, 2020, 13(17): 4199-4213. [百度学术]
CHEN A, WEN Y, HAN X, et al. Electrochemical Decomposition of Wheat Straw Lignin into Guaiacyl-, Syringyl-, and Phenol-type Compounds Using Pb/PbO2 Anode and Alloyed Steel Cathode in Alkaline Solution[J]. Environmental Progress & Sustainable Energy, DOI: 10.1002/ep.13117. [百度学术]
ZHANG Y, FATEHI P. Periodate oxidation of carbohydrate-enriched hydrolysis lignin and its application as coagulant for aluminum oxide suspension[J]. Industrial Crops and Products, 2019, 130: 81-95. [百度学术]
SHEN X J, CHEN T, WANG H M, et al. Structural and Morphological Transformations of Lignin Macromolecules during Bio-based Deep Eutectic Solvent (DES) Pretreatment[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(5): 2130-2137. [百度学术]
JENNINGS J A, PARKIN S, MUNSON E, et al. Regioselective Baeyer-Villiger oxidation of lignin model compounds with tin beta zeolite catalyst and hydrogen peroxide[J]. RSC Advances, 2017, 7(42): 25987-25997. [百度学术]
OLIVEIRA R C P, MATEUS M, SANTOS D. Black Liquor Electrolysis for Hydrogen and Lignin Extraction[J]. ECS Transactions, DOI: 10.1149/07222.0043ecst. [百度学术]
HADDAD M, LABRECQUE R, BAZINET L, et al. Effect of process variables on the performance of electrochemical acidification of kraft black liquor by electrodialysis with bipolar membrane[J]. Chemical Engineering Journal, 2016, 304: 977-985. [百度学术]
FENG C, GAO X, WU H. Emission of particulate matter during the combustion of bio-oil and its fractions under air and oxyfuel conditions[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4061-4068. [百度学术]
FURUSJO E, PETTERSSON E. Mixing of Fast Pyrolysis Oil and Black Liquor: Preparing an Improved Gasification Feedstock[J]. Energy & Fuels, 2016, 30(12): 10575-10582. [百度学术]
唐 华, 王大伟, 栾小娟. 制浆黑液燃烧特性实验研究进展[J]. 中国造纸, 2020, 39(9): 68-73. [百度学术]
TANG H, WANG D W, LUAN X J. Experimental Research Progress of Combustion Characteristics of Pulping Black Liquor[J]. China Pulp & Paper, 2020, 39(9): 68-73. [百度学术]
LI C, WANG Y, TANG Z, et al. The bifunctional active sites on carbon supported Fe-Mo bimetallic catalyst to improve kraft lignin liquefaction[J]. Renewable Energy, 10.1016/j.renene.2023.1195033. [百度学术]
QI R, XU Z, ZHOU Y, et al. Clean solid fuel produced from cotton textiles waste through hydrothermal carbonization with FeCl3: Upgrading the fuel quality and combustion characteristics[J]. Energy, DOI: 10.1016/j.energy.2020.118926. [百度学术]
ZHU C, DOU X, LI W, et al. Efficient depolymerization of kraft lignin to liquid fuels over an amorphous titanium-zirconium mixed oxide supported partially reduced nickel-cobalt catalyst[J]. Bioresource Technology, 2019, 284: 293-301. [百度学术]
ZHUANG X, ZHAN H, HUANG Y, et al. Conversion of industrial biowastes to clean solid fuels via hydrothermal carbonization (HTC): Upgrading mechanism in relation to coalification process and combustion behavior[J]. Bioresource Technology, 2018, 267: 17-29. [百度学术]
GONZALEZ-VOGEL A, MOLTEDO J, REYES R Q, et al. High frequency pulsed electrodialysis of acidic filtrate in kraft pulping[J]. Journal of Environmental Management, DOI: 10.1016/j.jenvman.2020.111891. [百度学术]
SAAD E G, ZEWAIL T M, ZATOUT A A, et al. Electrochemical removal of sulfide ions and recovery of sulfur from sulfide ions containing wastes[J]. Journal of Industrial and Engineering Chemistry, 2021, 94: 390-396. [百度学术]
ZHANG H, GONG Z, LIU L, et al. Study on the Migration Characteristics of Sulfur and Nitrogen During Combustion of Oil Sludge with CaO Additive[J]. Energy & Fuels, 2020, 34(5): 6124-6135. [百度学术]
ALEN R, RYTKONEN S, MEKEOUGH P. Thermogravimetric behavior of black liquors and their organic constituents[J]. Journal of Analytical and Applied Pyrolysis, 1995, 31: 1-13. [百度学术]
AI-KAABI Z, PRADHAN R R, THEVATHASAN N, et al. Potential value added applications of black liquor generated at paper manufacturing industry using recycled fibers[J]. Journal of Cleaner Production, 2017, 149: 156-163. [百度学术]
武书彬, 谭 扬, 郭伊丽, 等. 黑液的热失重特性及其动力学分析[J]. 华南理工大学学报(自然科学版), 2007, 35(6): 59-63. [百度学术]
WU S B, TAN Y, GUO Y L, et al. Thermal Weightlessness Characteristics and Kinetic Analysis of Black Liquor [J]. Journal of South China University of Technology(Natural Science Edition), 2007, 35(6): 59-63. [百度学术]
SINGH S P, BANSAL M C, SINGH S P. Combustion kinetics for soda black liquor-bagasse pith[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, 38(9): 1197-1205. [百度学术]
ORDONEZ-LOZA J, CHEJNE F, JAMEEL A G A, et al. An investigation into the pyrolysis and oxidation of bio-oil from sugarcane bagasse: Kinetics and evolved gases using TGA-FTIR[J]. Journal of Environmental Chemical Engineering, DOI: 10.1016/j.jece.2021.106144. [百度学术]
ZHANG R, ZHONG Z, HUANG Y. Combustion characteristics and kinetics of bio-oil[J]. Frontiers of Chemical Engineering in China, 2009, 3(2): 119-124. [百度学术]