摘要
本研究选用球形碳(GS)作为插层剂,还原氧化石墨烯(rGO)作为导电基质,纤维素纳米纤丝(CNF)作为绿色柔性基底,制备了具有三明治结构的石墨烯/纳米纤维素复合导电纸(rGO/GS/CNF),并探讨了GS和CNF的加入对rGO/GS/CNF的影响。结果表明,与纯石墨烯导电纸相比,CNF和GS的存在改变了复合纸的微观结构,使rGO/GS/CNF具有更好的力学强度(53.7 MPa);GS的嵌入增加了rGO的片层距离,有效改善了rGO/GS/CNF的倍率性能和电容性能。在0.5 mA/c
由于可穿戴和便携式电子产品需求的爆发式增长,具有良好灵活性的能量存储设备得到了广泛关注,超级电容器(supercapacitors,SCs)作为一种具有高功率密度和长循环寿命的储能装置,可应用于上述领
石墨烯是一种通过s
为了增强石墨烯和碳球之间的连接,还需要进一步引入柔性基底。纤维素纳米纤丝(cellulose nanofibril,CNF)作为一种具有纳米级尺寸的纤维,具有高的力学强度和长径
本研究首先采用改良的Hummers法制备氧化石墨烯(graphene oxide,GO),还原得到还原氧化石墨烯(reduced graphene oxide,rGO);随后以葡萄糖为碳前驱体合成水热碳球(glucose derived carbon spheres,GS),将其作为插层剂防止rGO片层的堆叠;最后引入CNF,并通过真空抽滤法得到石墨烯/纳米纤维素复合导电纸(rGO/GS/CNF)。该复合纸具有超薄、质轻、机械性能和导电性能优异的特点,在SCs的应用中克服了对额外的黏合剂、导电材料和电流收集器的依赖,为制备具有平衡性能的自支撑复合导电纸,并将其作为高性能的电极材料提供了一种实用的策略。
高纯石墨粉(纯度99.99%),苏州碳丰科技有限公司;无水乙醇、浓硫酸(H2SO4,质量分数98%)和过氧化氢(H2O2,质量分数30%),广东广试试剂科技有限公司;高锰酸钾(KMnO4)、硝酸钠(NaNO3)、抗坏血酸、纤维素纳米纤丝(CNF)、葡萄糖,分析纯,上海阿拉丁化学试剂有限公司;溴化钾(光谱纯),上海麦克林化学试剂有限公司。
将1 g高纯石墨粉、0.5 g NaNO3和75 mL H2SO4于冰浴条件下强力搅拌,30 min后缓慢加入4.5 g KMnO4并继续搅拌90 min,随后在35 ℃下反应4 h。反应结束后,先后加入50 mL纯水和3.5 mL H2O2(质量分数30%)以稀释溶液和除去过量的KMnO4,采用大量去离子水反复洗涤至pH值=5,离心收集下层沉淀,得到墨黑色的GO溶液,加入抗坏血酸得到还原氧化石墨烯(rGO)。
磁力搅拌下将葡萄糖粉末均匀分散于15 mL去离子水中,待溶液至透明将其转移至马弗炉中,220 ℃下反应12 h。反应结束后,先后添加去离子水和无水乙醇除去杂质,干燥得到葡萄糖水热碳球(GS)粉末。
使用TEM观察CNF的微观形貌。首先将CNF悬浮液高度稀释,随后将分散液滴到碳膜上,在20 kV加速电压下观察CNF微观结构。使用扫描电子显微镜(SEM,日本JEOL,JSM-7800F)对样品的微观形貌进行观察;首先将干燥的样品贴在导电胶带上,喷金后在10 kV加速电压下观察样品微观结构。
采用傅里叶变换红外光谱仪(FT-IR,德国Bruker,TENSOR 27)获得样品的FT-IR谱图;将样品与溴化钾以50∶1的质量比研磨均匀后,使用压片机进行压片,在400~4 000 c
采用X射线衍射仪(XRD,德国Bruker,D8 Advance)分析样品的晶相结构,在工作电压40 kV、电流40 mA、扫描范围5°~90°、速率5 °/min的条件下,对样品进行测试。
样品的电化学性能测量通过电化学工作站(上海辰华仪器有限公司,CHI660E)进行,测试体系包括三电极和二电极。首先通过三电极体系来测量单根电极的电化学性能,具体包括循环伏安(CV)、恒流充放电(GCD)及交流阻抗(EIS)测试。以1 mol/L的H2SO4溶液为电解质,铂片、Ag/AgCl、复合纸分别作为对电极、参比电极和工作电极。在CV和GCD测试中,工作电压设为0~0.8 V,扫描速率和电流密度分别为5~200 mV/s和0.001~0.01 mA/c
根据GCD曲线,按照
Cs=(I·t)/(∆U·S1) | (1) |
式中,I是电流密度,mA/c
二电极测试体系用于测量SCs整体的电化学性能。由1 mol/L的Na2SO4作电解液,采用2个面积相同的rGO/GS/CNF,分别作为对称超级电容器的正极和负极,其中电极的面积比电容计算如
Cs=2(I·t)/(∆U·S2) | (2) |
式中,S2是2个工作电极中的电极材料活性面积之和,c
此外,能量密度和功率密度的计算依据式(3)~
(3) |
(4) |
式中,E是能量密度,μWh/c

图2 rGO/GS/CNF的SEM图
Fig. 2 SEM images of rGO/GS/CNF

图3 rGO/GS/CNF的XRD和FT-IR谱图
Fig. 3 XRD and FT-IR spectra of rGO/GS/CNF
从

图4 rGO/GS/CNF的拉伸性能和导电性能
Fig. 4 Tensile property and electrical conductivity of rGO/GS/CNF
首先在三电极体系下测试rGO/GS/CNF的电化学性能,结果如

图5 三电极体系下rGO/GS/CNF的电化学性能
Fig. 5 Electrochemical properties of rGO/GS/CNF in three-electrode system
i(V)=k1⋅ν+k2⋅ | (5) |
式中,i(V)是实测电流,A/g,即表面赝电容控制电流与物理扩散控制电流之和;v是扫描速率,mV/s;k1和k2是与扫描速率(ν)无关的常数,分别对应于表面控制过程和扩散控制过程。
通过计算k1和k2值,可量化rGO膜和rGO/GS/CNF中电双层电容和赝电容的贡献,结果如
对于柔性电极来说,面积比电容是评价材料电容性能的重要参数,本研究进一步计算rGO/GS/CNF的比电容。

图6 rGO/GS/CNF的GCD曲线和倍率性能
Fig. 6 GCD curves and magnification performance of rGO/GS/CNF
用EIS研究了rGO/GS/CNF和rGO的电阻行为,其中

图7 rGO/GS/CNF的Nyquist曲线和循环稳定性
Fig. 7 Nyquist curve and cycle stability of rGO/GS/CNF
为了进一步探讨rGO/GS/CNF的实际应用潜力,采用双电极体系在1 mol/L的Na2SO4电解液中测试了rGO/GS/CNF的电化学性能,结果如

图8 二电极体系下rGO/GS/CNF的电化学性能
Fig. 8 Electrochemical properties of rGO/GS/CNF in two-electrode system
进一步根据
材料 | 功率密度/(mW·c | 能量密度/(μWh·c | 参考文献 |
---|---|---|---|
rGO/GS/CNF | 2.08 | 62.0 | 本工作 |
纯石墨烯膜 | 3.3 | 7.3 |
[ |
RGO/CNF复合膜 | 19.3 | 53.6 |
[ |
MXene/石墨烯复合气凝胶 | 0.06 | 2.18 |
[ |
V2O5@PEDOT/石墨烯复合膜 | 0.011 | 0.18 |
[ |
石墨烯/碳纳米管复合膜 | 0.26 | 1.36 |
[ |
本研究以还原氧化石墨烯(rGO)作为导电活性物质、纤维素纳米纤丝(CNF)为绿色柔性基底,并引入碳球(GS)作为嵌入剂和电容增强剂,成功制备了具有优异导电性和电容性能的石墨烯/纳米纤维素复合导电纸(rGO/GS/CNF),研究了碳球和CNF的加入对复合导电纸的影响。
3.1 GS和rGO被CNF有效连接,机械拉伸强度得到增加,可达53.7 MPa,约是纯rGO膜的5倍。
3.2 由于GS和CNF的插层效应,rGO片层的堆叠现象得到有效抑制,并扩大了rGO/GS/CNF的层间距离。
3.3 与纯rGO导电纸相比,rGO/GS/CNF在大电流密度下具有更高的比电容、循环稳定性和倍率性能。在三电极体系中,当电流密度为0.5 mA/c
参 考 文 献
CHEN X, VILLA N S, ZHUANG Y F, et al. Stretchable Supercapacitors as Emergent Energy Storage Units for Health Monitoring Bioelectronics[J]. Advanced Energy Materials, DOI: 10.1002/aenm.201902769. [百度学术]
LIU W, SONG M, KONG B, et al. Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives[J]. Advanced Materials, DOI: 10.1002/adma.201603436. [百度学术]
XU B, WANG H, ZHU Q, et al. Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes[J]. Energy Storage Material, 2018, 12: 128-136. [百度学术]
YANG Z, TIAN J, YIN Z, et al. Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review[J]. Carbon, 2019,141: 467-480. [百度学术]
ZHOU B Y, FAN S J, FAN Y C, et al. Recent progress in ceramic matrix composites reinforced with graphene nanoplatelets[J]. Rare Metals, DOI: 10.1007/s12598-019-01306-2. [百度学术]
ROSE A, PRASAD K G, SAKTHIVEL T, et al. Electrochemical analysis of graphene oxide/polyaniline/polyvinyl alcohol composite nanofibers for supercapacitor applications[J]. Applied Surface Science, 2018, 449: 551-557. [百度学术]
李仁坤, 王习文. 石墨烯/MnO2/纳米纤维素柔性电极材料的制备及其性能研究[J]. 中国造纸, 2020, 39(10): 8-14. [百度学术]
LI R K, WANG X W.Preparation and Properties of Graphene/MnO2/Nanocellulose Flexible Electrode Material[J]. China Pulp & Paper, 2020, 39(10): 8-14. [百度学术]
陈京环, 刘金刚, 侯磊磊, 等. 羧乙基微纤化纤维素/石墨烯/聚苯胺复合膜的制备与表征[J]. 中国造纸, 2021, 40(11): 19-28. [百度学术]
CHEN J H, LIU J G, HOU L L, et al. Preparation and Characterization of Carboxyethyl Microfibrillated Cellulose/Graphene/Polyaniline Composite Film[J]. China Pulp & Paper, 2021, 40(11): 19-28. [百度学术]
栾云浩, 曹 慧, 贾凌云, 等. 用于超级电容器电极材料的CNCs/PVA/RGO/PPy复合气凝胶[J]. 中国造纸学报, 2023, 38(3): 18-23. [百度学术]
LUAN Y H, CAO H, JIA L Y, et al. CNCs/PVA/RGO/PPy Composite Aerogel for Electrode Materials of Supercapacitors[J]. Transactions of China Pulp and Paper, 2023, 38(3): 18-23. [百度学术]
呼延永江, 高 帆. 石墨烯掺杂对木质素基碳纳米纤维电化学性能影响的研究[J]. 中国造纸学报, 2020, 35(1): 33-38. [百度学术]
HUYAN Y J, GAO F. Effect of Graphene Doping on the Electrochemical Properties of Lignin-based Carbon Nanofibers[J]. Transactions of China Pulp and Paper, 2020, 35(1): 33-38. [百度学术]
张 涛, 李梦扬, 项钰洲, 等. RGO/CNTs/CNF柔性电极的制备及表征[J]. 中国造纸, 2023, 42(7): 10-19. [百度学术]
ZHANG T, LI M Y, XIANG Y Z, et al. Preparation and Characterization of RGO/CNTs/CNF Flexible Electrodes[J]. China Pulp & Paper, 2023, 42(7): 10-19. [百度学术]
ZHU Y, RAJOU K, VOT S L, et al. Modifications of MXene layers for supercapacitors[J]. Nano Energy, DOI: 10.1016/j.nanoen.2020.104734. [百度学术]
HE C, XIAO Y, DONG H, et al. Mosaic-structured SnO2@C Porous Microspheres for High-performance Supercapacitor Electrode Materials[J]. Electrochimica Acta, 2014, 142:157-166. [百度学术]
ZHANG W, PAN Z, LYU W, et al. Wasp nest-imitated assembly of elastic rGO/p-Ti3C2Tx MXene-cellulose nanofibers for high performance sodium-ion batteries[J]. Carbon, 2019, 153:625-633. [百度学术]
LIU Q, SUN W, YUAN T, et al. Green and cost-effective synthesis of flexible, highly conductive cellulose nanofiber/reduced graphene oxide composite film with deep eutectic solvent[J]. Carbohydrate Polymers, DOI: 10.1016/j.carbpol.2021.118514. [百度学术]
GARCIA-MATEOS F J, BERENGUER R, CORDERO T, et al. Phosphorus functionalization for the rapid preparation of highly nanoporous submicron-diameter carbon fibers by electrospinning of lignin solutions[J]. Journal of Materials Chemistry A, 2018, 6(3): 1219-1233. [百度学术]
FANG W, YUAN T Q, SUN R C, et al. Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs)[J]. Green Chemistry, 2017, 19(8): 1794-1827. [百度学术]
STERN O Z. Where do batteries end and supercapacitors begin [J]. Electrochem, 1924, 30: 508-532. [百度学术]
ZHU J B, ZU J S, JI J, et al. Self-assembled reduced graphene oxide films with different thicknesses as high performance supercapacitor electrodes[J]. Journal of Energy Storage, DOI: 10.1016/j.est.2020.101795. [百度学术]
XIONG C, ZHENG C, NIE S, et al. Fabrication of Reduced Graphene Oxide-cellulose Nanofibers Based Hybrid Film with Good Hydrophilicity and Conductivity as Electrodes of Supercapacitor[J]. Cellulose, 2021, 28(6): 3733-3743. [百度学术]
YUE Y, LIU N, MA Y, et al. Highly Self-healable 3D Microsupercapacitor with MXene-graphene Composite Aerogel[J]. ACS Nano, 2018, 12(5): 4224-4232. [百度学术]
WANG L, SHU T, GUO S, et al. Fabricating Strongly Coupled V2O5@PEDOT Nanobelts/Graphene Hybrid Films with High Areal Capacitance and Facile Transferability for Transparent Solid-state Supercapacitors[J]. Energy Storage Materials, 2020, 27: 150-158. [百度学术]
WANG Y, ZHANG Y, WANG G, et al. Direct Graphene-carbon Nanotube Composite Ink Writing All-solid-state Flexible Microsupercapacitors with High Areal Energy Density[J]. Advanced Function Materials, DOI: 10.1002/adfm.201907284. CPP [百度学术]