摘要
农业废弃物稻草秸秆经NaOH预处理、TEMPO氧化和机械处理,再经真空抽滤成膜并与F
随着人们环保意识的提高和政府禁塑政策的实施,不可降解塑料制品的使用受到了限制。天然纤维素具有储量丰富、可降解、绿色环保等优势,用其替代塑料制品有望解决塑料污染危
目前,纤维素疏水改性的方法有物理法(包括涂布、浸渍、物理吸附等)和化学法(包括接枝共聚、酯化、化学沉积等
近年来,TEMPO氧化纤维素被广泛研究,其可通过在纤维素分子中葡萄糖单元的碳C6位引入羧基,为纤维素功能化改性提供更多的途
我国是世界上最大的稻米生产国,每年产生的稻草秸秆约2.2亿
稻草秸秆取自湖南省岳阳市。氢氧化钠(NaOH,分析纯(AR),质量分数99%)、溴化钠(NaBr,AR,质量分数99%)、三氯化铁六水合物(FeCl3·6H2O,AR,质量分数99%),购自天津市大茂化学试剂厂。2,2,6,6-四甲基哌啶-1-氧基自由基(TEMPO,AR,质量分数98%),购自上海麦克林生化科技股份有限公司。次氯酸钠(NaClO,AR,活性氯质量分数6%~14%),购自上海阿拉丁生化科技股份有限公司。甲醇(AR,质量分数99%)、无水乙醇(AR,质量分数99%),购自广东光华科技股份有限公司。丙酮(AR,质量分数99%),购自广州化学试剂厂。正己烷(AR,质量分数97%),购自国药集团化学试剂有限公司。所有化学品均未进一步纯化。去离子水为实验室自制。
将稻草秸秆截成约10 cm的小段,备用。首先,在70 ℃的条件下用热水处理1 h,共处理3次。随后,采用NaOH预处理去除稻草秸秆中大部分的木质素和半纤维
将CMF悬浮液经孔径为0.22 μm的聚四氟乙烯膜(PTFE),通过直径为90 mm的漏斗进行抽滤,制备得到定量200 g/

图1 CMF@Fe(Ⅲ)膜的制备流程
Fig. 1 Preparation process of CMF@Fe(Ⅲ) film
通过场发射扫描电子显微镜(FESEM,SU5000,HITACHI公司,日本)对CMF、CMF膜和CMF@Fe(Ⅲ)膜的微观形貌进行观察,测试前对样品进行喷金处理(30 s),加速电压为2和3 kV。另外,利用FESEM(SU8010,HITACHI公司,日本)获得C、O、Fe元素映射图。
利用傅里叶变换衰减全反射红外光谱仪(ATR-FT-IR,Nicolet IS50-Nicolet Continuum,赛默飞世尔科技公司,美国)对样品的化学结构进行测量,波数范围为400~4 000 c
利用X射线衍射仪(XRD,Xpert Powder,帕纳科公司,荷兰)获得了样品在2θ=5°~40°的结晶信息。通过
(1) |
式中,I200表示衍射峰在2θ=22.5°附近的最大衍射强度,Iam表示样品中非晶形态组分的最小衍射强度(2θ≈18°)。
利用材料力学试验机(INSTRON 3400,英斯特朗公司,美国)对CMF膜和CMF@Fe(Ⅲ)膜进行拉伸测试。测试前,样品被置于恒温恒湿环境下(温度(23±2) ℃和相对湿度(50±2)%)48 h。拉伸试样的尺寸为5 mm×20 mm,以2 mm/min的速度进行拉伸测试。湿拉伸测试中,将每个样品完全浸入去离子水中30 min后取出,去除表面的水分后进行拉伸测试。
采用接触角测量仪(Attension Theta Flex,百欧林科技有限公司,芬兰)对样品表面的接触角进行分析。测试步骤如下:室温下(约25 ℃)将5 μL的去离子水滴到样品表面,记录随时间变化的接触角图像。此外,为了评估样品对有机溶剂的耐受性,将CMF@Fe(Ⅲ)膜浸泡于有机溶剂中(甲醇、乙醇、丙酮、正己烷)2 h,待有机溶剂挥发完全后,测量水滴接触10 s时样品的接触角。
将薄膜样品尺寸裁切为10 mm×20 mm,然后在60 ℃的烘箱中干燥至恒质量,取出称量质量为m0。随后,将样品浸入去离子水中浸泡24 h,取出放入滤纸中,在2 kg压力下挤压以除去多余的水分,称量得质量m1。吸水率按
(2) |
式中,m0为薄膜干燥后的初始质量,g;m1为薄膜浸入去离子水中浸泡24 h后的质量,g。
为了研究离子交联前后膜材料的阻隔性能,采用水蒸气透过率测定仪(WVTR,W413 2.0,广州标际包装设备有限公司)测试了CMF膜和CMF@Fe(Ⅲ)膜的水蒸气透过率。测试环境为相对湿度70%,30 ℃恒温,流量20 mL/min。
对所制备的CMF形貌进行SEM表征,如

图2 CMF尺寸形貌、离子交联前后CMF膜以及元素映射FESEM图
Fig. 2 FESEM images and elemental mapping of CMF and CMF films before and after ions cross-linking
膜材料表面的微观形貌与其机械性能和耐水性能密切相关。
为了充分理解CMF@Fe(Ⅲ)膜的疏水机理,

图3 CMF与F
Fig. 3 Schematic diagram of CMF crosslinking with F
利用ATR-FT-IR观察了离子交联前后样品化学结构的变化,如

图4 CMF膜和CMF@Fe(Ⅲ)膜的ATR-FT-IR谱图
Fig. 4 ATR-FT-IR spectras of CMF and CMF@Fe(Ⅲ) films

图5 CMF的Zeta电位及F
Fig. 5 Zeta potential of CMF and macroscopic diagram of cross-linking with F
为了进一步确定CMF与F

图6 CMF和CMF@Fe(Ⅲ)的XRD谱图
Fig. 6 XRD spectra of CMF and CMF@Fe(Ⅲ)
接触角能直接反映材料的亲疏水性。CMF膜表面的接触角如

图7 CMF膜的接触角
Fig. 7 Contact angle of CMF film

图8 不同F
Fig. 8 Effect of different F

图9 CMF膜和CMF@Fe(Ⅲ)膜与水滴接触时的疏水性能
Fig. 9 Hydrophobic properties of CMF and CMF@Fe(Ⅲ) films in contact with water droplets
为了进一步研究疏水性的稳定性,对CMF@Fe(Ⅲ)膜进行了一系列时间梯度(0~300 s)的接触角测量,如

图10 CMF@Fe(Ⅲ)膜表面接触角随时间的变化(0~300 s)
Fig. 10 Variation of contact angle on CMF@Fe(Ⅲ) film surface with times (0~300 s)

图11 CMF@Fe(Ⅲ)膜在不同有机溶剂中浸泡2 h后的接触角
Fig. 11 Contact angle of CMF@Fe(Ⅲ) film after 2 h immersion in different organic solvents

图12 CMF膜和CMF@Fe(Ⅲ)膜浸泡在水中24 h的吸水率
Fig. 12 Water absorption of CMF and CMF@Fe(Ⅲ) films soaked in water for 24 h
利用WVTR测试仪评估了F

图13 CMF膜和CMF@Fe(Ⅲ)膜的厚度和水蒸气透过率
Fig. 13 Thickness and WVTR of CMF and CMF@Fe(Ⅲ) films

图14 CMF膜和CMF@Fe(Ⅲ)膜的拉伸性能
Fig. 14 Tensile properties of CMF and CMF@Fe(Ⅲ) films
分别将CMF膜和CMF@Fe(Ⅲ)膜浸入去离子水中30 min,测试其拉伸性能,结果如
对F

图15 CMF膜和CMF@Fe(Ⅲ)膜的TG曲线
Fig. 15 TG curves of CMF and CMF@Fe(Ⅲ) films
稻草秸秆经过NaOH预处理和TEMPO氧化后,制得含—CO
3.1 CMF中—CO
3.2 F
3.3 随着F
参 考 文 献
李江琴, 姚凯利, 胡天丁, 等. 纤维素基膜材料的应用研究进展[J]. 功能材料, 2023, 54(6): 6080-6087. [百度学术]
LI J Q, YAO K L, HU T D, et al. Advances in the Application of Cellulose-based Membrane Materials[J]. Journal of Functional Materials, 2023, 54(6): 6080-6087. [百度学术]
LI T, CHEN C, BROZENA A H, et al. Developing Fibrillated Cellulose as a Sustainable Technological Material[J]. Nature, 2021, 590(7844): 47-56. [百度学术]
易 凯, 付时雨. 纤维素基超疏水材料的制备与应用研究进展[J]. 中国造纸, 2022, 41(2): 115-121. [百度学术]
YI K, FU S Y. Research Progress in Preparation and Application of Cellulose-based Superhydrophobic Materials[J]. China Pulp & Paper, 2022, 41(2): 115-121. [百度学术]
崔张宁, 胡紫璇, 吴 雷, 等. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. [百度学术]
CUI Z N, HU Z X, WU L, et al. Research Progress on the Water Resistance of Degradable Cellulose-based Materials[J]. CIESC Journal, 2023, 74(6): 2296-2307. [百度学术]
杨 爽, 柴新宇, 聂双喜, 等. 纳米纤维素的疏水性及分散性研究进展[J]. 中国造纸, 2017, 36(10): 61-67. [百度学术]
YANG S, CHAI X Y, NIE S X, et al. Research Progress on Improving Dispersibility and Hydrophobicity of Nanocellulose[J]. China Pulp & Paper, 2017, 36(10): 61-67. [百度学术]
王秋雨, 乌日娜, 王高升. 纤维素基超疏水材料的研究概况[J]. 中国造纸, 2019, 38(9): 69-73. [百度学术]
WANG Q Y, WU R N, WANG G S. Research Progress of Cellulose Based Super-hydrophobic Materials[J]. China Pulp & Paper, 2019, 38(9): 69-73. [百度学术]
欧章明, 窦文芳, 王 慧, 等. 聚乳酸/聚己内酯涂布纸基透水材料的性能[J]. 天津科技大学学报, 2022, 37(4): 30-36. [百度学术]
OU Z M, DOU W F, WANG H, et al. Properties of Polylactic Acid/Polycaprolactone Coated Paper-based Water Permeable Materials[J]. Journal of Tianjin University of Science & Technology, 2022, 37(4): 30-36. [百度学术]
CHEN Q, ZHOU M, YUAN J, et al. High-strength and Recyclable Hydroplastic Films from Hydrophobic Cellulose Nanofibers Produced via Deep Eutectic Solvents[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2023.146771. [百度学术]
ISOGAI A, HäNNINEN T, FUJISAWA S, et al. Review: Catalytic Oxidation of Cellulose with Nitroxyl Radicals under Aqueous Conditions[J]. Progress in Polymer Science, 2018, 86: 122-148. [百度学术]
杨伟凯, 陈昱文, 张宗威, 等. C
YANG W K, CHEN Y W, ZHANG Z W, et al. Study on Preparation and Properties of C
XU H, LIU Y, XIE Y, et al. Doubly Cross-linked Nanocellulose Hydrogels with Excellent Mechanical Properties[J]. Cellulose, 2019, 26(16): 8645-8654. [百度学术]
LEE K, JEON Y, KIM D, et al. Double-crosslinked Cellulose Nanofiber Based Bioplastic Films for Practical Applications[J]. Carbohydrate Polymers, DOI: 10.1016/j.carbpol.2021.117817. [百度学术]
SUN H, ZHENG D, ZHU Y, et al. Multiscale Design for Robust, Thermal Insulating, and Flame Self-extinguishing Cellulose Foam[J]. Small, DOI: 10.1002/smll.202306942. [百度学术]
SHARMA A, SINGH G, ARYA S K. Biofuel from Rice Straw[J]. Journal of Cleaner Production, DOI: 10.1016/j.jclepro.2020.124101. [百度学术]
刘裕杰, 平清伟, 李 娜, 等. 稻草乙醇浆纳米纤维素的性状分析[J]. 中国造纸, 2019, 38(8): 29-33. [百度学术]
LIU Y J, PING Q W, LI N, et al. Preparation of Nanocellulase from Alcohol Straw Pulp[J]. China Pulp & Paper, 2019, 38(8): 29-33. [百度学术]
孙红梅, 朱玉梅, 周 军. 关于秸秆焚烧的危害及禁烧对策探讨[J]. 环境与可持续发展, 2017, 42(5): 93-94. [百度学术]
SUN H M, ZHU Y M, ZHOU J. The Harm of Straw Burning and Its Counterburning Measures[J]. Environment and Sustainable Development, 2017, 42(5): 93-94. [百度学术]
LOTFY V F, BAO Z, ZHOU X, et al. Toward Pulping Process for Enhancing the RS-black Liquors as Precursor of Activated Carbons for Aqueous Adsorbent Purposes[J]. Scientific Reports, DOI: 10.1038/s41598-023-47447-4. [百度学术]
SAITO T, NISHIYAMA Y, PUTAUX J L, et al. Homogeneous Suspensions of Individualized Microfibrils from TEMPO-catalyzed Oxidation of Native Cellulose[J]. Biomacromolecules, 2006, 7(6): 1687-1691. [百度学术]
SEGAL L, CREELY J J, MARTIN A E, et al. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794. [百度学术]
QU R J, WANG Y, LI D, et al. Rheological Behavior of Nanocellulose Gels at Various Calcium Chloride Concentrations[J]. Carbohydrate Polymers, DOI: 10.1016/j.carbpol.2021.118660. [百度学术]
BENIWAL P, TOOR A P. Advancement in Tensile Properties of Polylactic Acid Composites Reinforced with Rice Straw Fibers[J]. Industrial Crops and Products, 2023, 192: 116098. [百度学术]
DONG H, SNYDER J F, WILLIAMS K S, et al. Cation-induced Hydrogels of Cellulose Nanofibrils with Tunable Moduli[J]. Biomacromolecules, 2013, 14(9): 3338-3345. [百度学术]
IBRAHIM M M, EL-ZAWAWY W K, ABDEL-FATTAH Y R, et al. Comparison of Alkaline Pulping with Steam Explosion for Glucose Production from Rice Straw[J]. Carbohydrate Polymers, 2011, 83(2): 720-726. [百度学术]
HUANG S, ZHAO Z, FENG C, et al. Nanocellulose Reinforced P(AAm-co-AAc) Hydrogels with Improved Mechanical Properties and Biocompatibility[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 395-404. [百度学术]
崔 婷. 多种预处理方法对纤维素结晶结构的影响[J]. 中国造纸学报, 2020, 35(2): 9-15. [百度学术]
CUI T. The Effects of Various Pretreatment Methods on Cellulose Crystalline Structure[J]. Transactions of China Pulp and Paper, 2020, 35(2): 9-15. [百度学术]
WANG Y, ZHANG H, ZHANG H, et al. Synergy Coordination of Cellulose-based Dialdehyde and Carboxyl with F
YALINCA Z, YILMAZ E, BULLICI F T. Evaluation of Chitosan Tripolyphosphate Gel Beads as Bioadsorbents for Iron in Aqueous Solution and in Human Blood in Vitro[J]. Journal of Applied Polymer Science, 2012, 125(2): 1493-1505. [百度学术]
RHIM J W . Physical and Mechanical Properties of Water Resistant Sodium Alginate Films[J]. LWT-Food Science and Technology, 2004, 37(3): 323-330. [百度学术]