摘要
本研究考察了漂白针叶木浆、漂白竹浆和漂白蔗渣浆3种纸浆纤维的沉降情况,研究了纤维种类和性质对其凝胶点浓度(Cg)的响应关系,为纸浆纤维悬浮液脱水过程中纤维网络的形成提供关键信息。结果表明,加拿大标准游离度(CSF)与Cg存在一定负相关关系;随着纤维保水值的增大,Cg总体上随之增大,并且保水值对Cg的影响受纤维种类的影响明显;随着纤维质均长度(L)的增大,Cg随之降低,当L增大至1.2 mm时,Cg基本不变;Cg的变化规律在较高长宽比(>20)下,可以采用拥挤数理论或有效介质理论解释,在较低长宽比时,2种理论均无法直接解释,还需要考虑纤维非物理性参数,如表面电荷等。
当前,“禁塑”“限塑”在全球范围内成为热
上述绿色包装材料的机械性能和其他关键指标,均与植物纤维原材料的成形脱水过程和纤维网络的形成密切相关,本质上与纸浆纤维悬浮液的流变行为密不可分。纸浆纤维悬浮液的流变行为,在很大程度上取决于纸浆纤维悬浮液的固体质量分数(即浆浓)。纤维具有较高的长宽比时,可在全浆浓范围内发生明显的接触,这将显著地影响纸浆纤维悬浮液的流变行
近年来,研究者试图预测或关联纸浆纤维的Cg。Kerekes等
Cg除了与纤维性质(L、ω、A等)密切相关外,还与体系pH值、C
综上,研究人员已对Cg有了一定的认识,但主要集中在木浆、MFC和CNF等材料上,对于非木浆或相对较小A的纤维的Cg仍缺乏认识。本研究将考察木浆、竹浆和蔗渣浆的Cg,通过传统打浆和重刀切断打浆后再筛分的处理手段,得到不同性质的纤维,考察影响纤维Cg的因素。
实验用漂白针叶木浆(以松木为主)为加拿大进口商品浆;漂白竹浆和漂白蔗渣浆为商品浆,分别购自贵州赤天化集团有限公司和广西湘桂华糖制糖集团来宾纸业有限责任公司。漂白针叶木浆、漂白竹浆和漂白蔗渣浆在下文分别简称“木浆”“竹浆”和“蔗渣浆”。
采用标准Valley打浆机(日本KRK仪器制造公司)进行打浆,其中木浆和竹浆收集3个打浆水平(未打浆、CSF 500 mL和CSF 400 mL)的浆样,蔗渣浆收集2个打浆水平(未打浆和CSF 400 mL)的浆样。
首先采用Valley打浆机(济南初创机电设备有限公司)对木浆和竹浆进行重刀切断打浆,然后采用鲍尔筛分仪(美国TMI公司)分别对重刀切断打浆后的木浆、竹浆及未打浆的蔗渣浆进行筛分,筛分目数依次为30、50、100和200目,各筛网截留的浆样分别记为R30、R50、R100和R200,未筛分浆样记为R0。
类型 | 浆样 | CSF/mL | WRV/g∙ | L/mm | W/µm | ω/µg∙ | Cg/kg∙ |
---|---|---|---|---|---|---|---|
木浆 | 未打浆 | 746.7 | 1.10 | 1.935 | 33.1 | 217.0 | 1.21 |
CSF 500 | 501.8 | 1.80 | 1.826 | 34.3 | 200.0 | 1.23 | |
CSF 400 | 406.0 | 1.88 | 1.808 | 33.7 | 180.0 | 1.32 | |
R0 | 80.0 | 2.85 | 0.713 | 31.9 | 152.4 | 4.29 | |
R30 | 668.0 | 1.83 | 1.546 | 33.6 | 190.3 | 1.16 | |
R50 | 619.0 | 1.91 | 0.924 | 32.8 | 170.1 | 4.75 | |
R100 | 541.5 | 2.10 | 0.600 | 33.5 | 168.3 | 5.88 | |
R200 | * | 3.48 | 0.298 | 28.6 | 127.4 | 6.36 | |
竹浆 | 未打浆 | 711.8 | 0.99 | 1.507 | 23.3 | 130.2 | 1.44 |
CSF 500 | 507.5 | 1.53 | 1.426 | 23.9 | 129.0 | 1.46 | |
CSF 400 | 398.5 | 1.71 | 1.383 | 24.2 | 123.0 | 1.50 | |
R0 | 85.5 | 2.86 | 0.745 | 21.9 | 105.2 | 3.83 | |
R30 | 611.5 | 1.87 | 1.231 | 22.7 | 136.5 | 1.15 | |
R50 | 574.0 | 1.94 | 0.856 | 22.2 | 105.0 | 2.56 | |
R100 | 486.5 | 1.93 | 0.569 | 22.8 | 94.1 | 4.63 | |
R200 | * | 3.07 | 0.281 | 21.5 | 85.5 | 5.59 | |
蔗渣浆 | 未打浆 | 505.6 | 1.46 | 0.697 | 22.4 | 118.0 | 6.38 |
CSF 400 | 402.0 | 1.78 | 0.684 | 22.5 | 116.0 | 6.52 | |
R0 | 501.0 | 1.54 | 0.709 | 22.7 | 112.9 | 6.36 | |
R30 | 737.5 | 1.19 | 1.597 | 22.3 | 135.7 | 0.44 | |
R50 | 713.0 | 1.26 | 0.776 | 21.5 | 127.2 | 4.85 | |
R100 | 593.0 | 1.55 | 0.450 | 23.1 | 113.1 | 10.01 | |
R200 | * | 2.25 | 0.253 | 21.9 | 93.6 | 10.46 |
注 *表示无法准确测量。

图1 3种纤维在不同打浆条件处理后纤维的沉降情况
Fig. 1 Sedimentation of three types of fibers under different beating conditions
(1) |
(2) |
式中,为沉降前液面高度,为沉降后纤维层高度,为初始纸浆悬浮液浓度,a、b为拟合系数。

图2 CSF与Cg的关系
Fig. 2 Relationship of CSF and Cg
Martinez等

图5 Cg与ω/
Fig. 5 Relationship of Cg and ω/
本研究考察了漂白针叶木浆、漂白竹浆和漂白蔗渣浆3种纸浆纤维的沉降情况,研究了纤维性质对纤维凝胶点浓度的影响。
3.1 加拿大标准游离度(CSF)与凝胶点浓度存在一定负相关关系。
3.2 随着纤维保水值增大,凝胶点浓度总体上随之增大,且变化趋势受纤维种类影响明显。
3.3 随着纤维质均长度增大,凝胶点浓度随之降低,当纤维质均长度增大到1.2 mm时,凝胶点浓度基本不变。
3.4 凝胶点浓度随粗度/长
参考文献
房桂干, 沈葵忠, 李晓亮, 等. 限塑和禁止固废进口政策下中国造纸工业纤维原料的供应策略[J]. 中国造纸, 2021, 40(7): 1-7. [百度学术]
FANG G G, SHEN K Z, LI X L, et al. Supply Strategy of Fiber Sources for China’s Paper Industry Under Policies of Restriction Usage of Plastic and Banning Solid Wastes Importation [J]. China Pulp & Paper, 2021, 40(7): 1-7. [百度学术]
张雪, 张红杰, 程芸, 等. 纸基包装材料的研究进展, 应用现状及展望[J]. 中国造纸, 2020, 39(11): 53-69. [百度学术]
ZHANG X, ZHANG H J, CHENG Y, et al. Research Progress, Application Status and Prospects of Paper-based Packaging Materials [J]. China Pulp & Paper, 2020, 39(11): 53-69. [百度学术]
DERAKHSHANDEH B, KEREKES R J, HATZIKIRIAKOS S G, et al. Rheology of pulp fibre suspensions: A critical review[J]. Chemical Engineering Science, 2011, 66(15): 3460-3470. [百度学术]
RAJ P, MAYAHI A, LAHTINEN P, et al. Gel point as a measure of cellulose nanofibre quality and feedstock development with mechanical energy[J]. Cellulose, 2016, 23(5): 3051-3064. [百度学术]
SANCHEZ-SALVADOR J L, MONTE M C, NEGRO C, et al. Simplification of gel point characterization of cellulose nano and microfiber suspensions[J]. Cellulose, 2021, 28(11): 6995-7006. [百度学术]
KEREKES R J, SCHELL C J. Characterization of fibre flocculation by a crowding factor[J]. Journal of Pulp and Paper Science, 1992, 18(1): 32-38. [百度学术]
MARTINEZ D, BUCKLEY K, JIVAN S, et al. Characterizing the mobility of papermaking fibres during sedimentation[C]// The Science of Papermaking: Transactions of the 12th Fundamental Research Symposium, Oxford: The Pulp and Paper Fundamental Research Society, 2001:225-254. [百度学术]
ZHANG L, BATCHELOR W, VARANASI S, et al. Effect of cellulose nanofiber dimensions on sheet forming through filtration[J]. Cellulose, 2012, 19(2): 561-574. [百度学术]
VARANASI S, HE R, BATCHELOR W. Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point[J]. Cellulose, 2013, 20(4): 1885-1896. [百度学术]
LI W, YANG Y, SHA J, et al. The influence of mechanical refining treatments on the rheosedimentation properties of bleached softwood pulp suspensions[J]. Cellulose, 2018, 25(6): 3609-3618. [百度学术]
SANCHEZ-SALVADOR J L, MONTE M C, BATCHELOR W, et al. Characterizing highly fibrillated nanocellulose by modifying the gel point methodology[J]. Carbohydrate Polymers, DOI:10.1016/j.carbpol.2019.115340. [百度学术]
LI Q, RAJ P, HUSAIN F A, et al. Engineering cellulose nanofibre suspensions to control filtration resistance and sheet permeability[J]. Cellulose, 2016, 23(1): 391-402. [百度学术]
RAJ P, VARANASI S, BATCHELOR W, et al. Effect of cationic polyacrylamide on the processing and properties of nanocellulose films[J]. Journal of Colloid and Interface Science, 2015, 447: 113-119. [百度学术]
ANG S, HARITOS V, BATCHELOR W. Cellulose nanofibers from recycled and virgin wood pulp: A comparative study of fiber development[J]. Carbohydrate Polymers, DOI: 10.1016/j.carbpol.2020.115900. [百度学术]
USHER S P. Suspension dewatering: Characterisation and optimisation [D]. Melbourne: University of Melbourne, 2005. [百度学术]
PATERSON D T, EAVES T S, HEWITT D R, et al. On two-phase modeling of dewatering pulp suspensions[J]. AIChE Journal, DOI: 10.1002/aic.17277. CPP [百度学术]