摘要
锂电池在电子储能领域的应用越来越广泛,市场需求量越来越大。隔膜作为锂电池的核心部件,其性能直接关系到锂电池的电化学性能和安全性。本文介绍了间位芳纶(PMIA)、纤维素、聚偏氟乙烯(PVDF)、聚酰亚胺(PI)、聚丙烯腈(PAN)和聚对苯二甲酸乙二醇酯(PET)基新型隔膜的制备方法,总结了以这些隔膜材料为基础改性的复合隔膜的研究成果,探讨了各类新型隔膜的优缺点。最后,提出了锂电池隔膜面临的挑战及解决方法,并对锂电池隔膜未来的发展方向进行了展望。
锂离子电池是通过在正负电极间嵌入L

图1 锂离子电池工作原理示意图
Fig. 1 Schematic diagram of lithium ion battery working principle
目前,市场上的锂离子电池隔膜以聚乙烯(PE)、聚丙烯(PP)等为代表的聚烯烃微孔隔膜为主。此类隔膜虽然制备工艺成熟,机械性能和化学稳定性高,但一方面,其电解液的亲和性差,不能充分吸收电解液,影响电化学性能;另一方面,其自身热稳定性低,高温受热会发生变形造成尺寸收缩,从而导致其安全性较差,容易引发短路等安全事故,无法满足高端领域锂离子电池设备的需
关于锂离子电池隔膜的研究进展有很多报道,但主要集中在聚烯烃隔膜的改性研究方面。基于目前对高安全性、高性能电池的需求,对新型隔膜的研究和开发已迫在眉睫。近10年来,PE、PP隔膜仍是国内外学者研究的热点,但新型隔膜的发展也日益兴起,特别是间位芳纶(PMIA)、纤维素、聚偏氟乙烯(PVDF)、聚酰亚胺(PI)、聚丙烯腈(PAN)及聚对苯二甲酸乙二醇酯(PET)等,统计近10年Web of Science各类隔膜的研究状况,如

图2 近10年Web of Science中不同种类隔膜的论文发表情况
Fig. 2 Papers published by different types of separators in Web of Science in the past decade
间位芳纶(PMIA)是近年来兴起的一种新型高性能合成纤维高分子材料,综合性能比较优异。与传统聚烯烃隔膜相比,PMIA具有更好的热稳定性、机械性能、自熄性和电绝缘性。此外,PMIA结构中存在极性较高的羰基基团,提高了隔膜的电化学性能。但纯PMIA隔膜很难形成凝胶,电解质亲和力
静电纺丝法薄膜是通过在高电压电场下使聚合物溶液分散成丝,在集板上收集,得到由无数根聚合物纤维组合而成的膜。这种工艺可以制得比表面积更大、孔隙率更高的隔膜,使其能够吸收更多的电解质,从而获得较高的离子电导率和良好的电化学性
采用静电纺丝法制备的纳米纤维膜能够很好地克服传统聚烯烃类隔膜孔隙率低与电解液亲和性差的缺点。肖
除此之外,Liu等

图3 原位生长法制备Z-PMIA工艺示意
Fig. 3 Process diagram of Z-PMIA prepared by in⁃situ growth metho
然而,静电纺丝工艺所制备的隔膜仍存在一些不足。如相比于传统的商品化聚烯烃隔膜而言,静电纺丝纳米纤维具有的随机堆叠结构,导致这种方法制备的隔膜机械性能通常较低。此外,电池的电化学性能和安全性也会因隔膜本身存在的问题而受到影响,如孔隙过大等。而且该方法不适合隔膜的大规模生产,因而对其应用有一定的局限
相分离法具有工艺简单、效率高、成本低等优势,是制备多孔膜的常用技术。其基本原理是,先将高分子溶解在溶剂中,再以一定的外力将均相溶液分离,形成高分子贫相和富相两相。成膜时,高分子富相成为膜的骨架,高分子贫相成为膜孔,从而形成高分子膜的微孔结构。根据相分离法机理的不同,应用最多的是非溶剂诱导相分离法(NIPS)和气相诱导相分离法(VIPS
这种方法由于其可控制性和通用性,具有广泛的商业化应用前景。Zhang等
一般来说,使用相分离法制备的隔膜材料中,无机陶瓷的含量可控且掺杂量较
热稳定性是影响电池安全性的关键因素之一。将PMIA涂覆在商用聚烯烃隔膜上,可以提升其热稳定性和电解质润湿性。Huang等
总之,静电纺丝法制备的隔膜孔隙率高、耐热性强,力学性能好,但成膜效率低,不利于大规模工业生产;相分离法操作简单,适合大面积成膜,但力学性能差。因此,PMIA隔膜的制备方法应综合考虑所制备复合隔膜的结构、综合性能以及成本等因素。
纤维素作为一种可再生、可持续和可生物降解的物质,是地球上含量最丰富的天然聚合物,具有优良的电解质润湿性和热稳定

图4 从生物质材料到纤维素分子示意
Fig. 4 From the biomass sources to the cellulose molecule
造纸工艺操作简单可控、绿色环保、成本低,适合工业上大规模的生产。其具体工艺流程如

图5 造纸工艺制备纤维素复合隔膜的工艺流
Fig. 5 Process flow of preparing cellulose composite separator by papermaking proces
纤维素成本低、力学性能和热稳定性能良
纤维素熔点较低,在高温下隔膜会发生收缩甚至燃烧,导致锂离子电池短路,这是纤维素隔膜的另一个不足之处。为了改善隔膜的阻燃性能和耐热性能,Zhang等

图6 ANF加入CNF隔膜孔隙结构演变示意
Fig. 6 Schematic illustration for the pore structural evolution in the CNF membrane driven by addition of AN
静电纺丝工艺是纤维素隔膜常用的制备工艺之一,该工艺制备的隔膜具有高的孔隙率,从而可以提高隔膜的润湿性和吸液率。Dong等

图7 复合膜的实验过程和结构示意
Fig. 7 Schematic illustration for the experimental process and structures of the composite membran
同轴静电纺丝操作简单、成本低,可以综合2种材料的优点,制备得到核/壳结构的纳米纤维素膜。Huang等
聚偏氟乙烯(PVDF)是偏氟乙烯的均聚物,C—F众多,因此综合性能优异。如化学稳定性良好、机械性能高、表面能低、介电常数高等,使PVDF基隔膜在锂离子电池中得到了广泛的应
为了提高纯PVDF隔膜的润湿性、热稳定性和离子电导率,Chen等

图8 静电纺丝复合膜的制备和电池组装的原理
Fig. 8 Schematic illustration of electrospun composite separator and battery assembl
向PVDF中引入亲水的添加剂来降低L

图9 L
Fig. 9 Simulated diffusion path of L
PVDF的共聚物机械强度好、热稳定性优异、极性高,因此在电池隔膜中应用较多。目前,研究较多的是将聚偏氟乙烯-六氟丙烯(PVDF-HFP)作为基体聚合物,通过共混、复合等改性方法来提升隔膜的综合性
总之,PVDF及其共聚物性能优异,是制备锂离子电池隔膜的理想材料。然而仍需要更多的研究工作,进一步提高PVDF隔膜的热稳定性和机械强度。另外,静电纺丝法是制备PVDF隔膜的常用方法之一,但静电纺丝隔膜存在着厚度不均和孔径较大问题,因此在改善静电纺丝法方面仍需要做更多的努力。
聚酰亚胺(PI)作为一种高性能高分子材料,具有独特的物理和化学性能,如优良的耐热性能(耐400 ℃以上高温)、良好的绝缘性和介电性能
用PI隔膜对商业隔膜做改性或以PI为基膜做改性,将会对商业隔膜的综合性能有一个大的提升。Yu等

图10 PP@PI微球复合膜结构示意
Fig. 10 Structure diagram of PP@PI microsphere composite membran
静电纺丝法是PI纤维基隔膜的一种主要制备工艺,这种方法制备的隔膜比表面积大、孔隙率高。然而,静电纺丝PI纤维基隔膜存在着一些缺点,如孔径大、分布不均匀、力学性能差等。为了解决该问题,Wang等
总之,虽然在制备PI纤维基隔膜上已有很大的进步,但其制造过程较复杂,生产成本较高,所以目前高性能的PI隔膜大多数处于实验室生产阶段。因此,开发降低成本、实现PI隔膜的商业化生产是未来的发展趋势。
聚丙烯腈(PAN)由于具有高介电常数、高液体电解质吸收、良好的离子导电性和优异的热稳定性被认为是锂电池隔膜的理想静电纺丝材
静电纺丝法是制备PAN基隔膜的常用方法。Guo等

图11 复合隔膜的制备及后处理工艺示意
Fig. 11 Separator fabrication and post-treatment proces
此外,在膜材料中引入阻燃剂可以提高锂离子电池的安全性。Kang等
聚对苯二甲酸乙二醇酯(PET)因其孔隙率高、机械性能好、电绝缘性能好、价格低廉等优点在锂离子电池隔膜中得到了广泛的应
Cai等
不同隔膜材料的性能对比如
隔膜材料 | 耐高温性能 | 制备工艺 | 吸液率/% | 离子 电导率/mS·c | 循环性能(循环50次后放电容量)/mAh· | 倍率性能(2 C倍率下放电容量)/mAh· | 参考文献 |
---|---|---|---|---|---|---|---|
聚烯烃 |
135 ℃闭孔, 160 ℃熔融 | 拉伸法 | 80 | 0.21 | 130 | 110 |
[ |
PMIA |
250 ℃以上长期工作, 410 ℃熔融 | 静电纺丝、相分离法、热压、涂布 | 173 | 1.51 | 100 | 103 |
[ |
PVDF |
40~150 ℃长期工作, 350 ℃熔融 | 静电纺丝、相分离法 | 353 | 3.47 | 142 | 95 |
[ |
PI |
600 ℃热分解, 无熔融 | 静电纺丝 | 347 | 1.84 | 149 | 151 |
[ |
PAN | 322 ℃熔融 | 静电纺丝 | 478 | 1.96 | 151 | 111 |
[ |
PET |
闭孔温度220 ℃, 265~280 ℃熔融 | 静电纺丝、热压、涂布 | 500 | 2.27 | 103 | 93 |
[ |
纤维素 |
350 ℃热分解, 无熔融 | 造纸工艺 | 269 | 0.40 | 176 | 178 |
[ |
本文对间位芳纶(PMIA)、纤维素、聚偏氟乙烯(PVDF)、聚酰亚胺(PI)、聚丙烯腈(PAN)及聚对苯二甲酸乙二醇酯(PET)几种新型隔膜材料的制备工艺和发展现状进行了总结。与传统聚烯烃隔膜相比,这几种新型隔膜热稳定性高、亲液性好、机械强度高,均是有望替代聚烯烃隔膜的优良候选材料。但这些新型隔膜也存在一定的缺点,如采用造纸工艺制备的纤维素隔膜虽成本低、力学性能好,但其熔点低,需进一步提高其热稳定性。对于PVDF隔膜,其结晶度高,存在疏水表面,从而导致锂离子传输受阻,为了降低PVDF隔膜的结晶度,可使用PVDF的共聚物(如PVDF-HFP)来代替PVDF,或将PVDF与聚合物或无机物等进行共混等。PMIA和PI隔膜具有优良的耐热性,但价格昂贵,因此,降低原料成本、逐步实现隔膜商业化是未来的发展趋势。对于PAN和PET隔膜,静电纺丝技术是常用的制备方法,但制备的隔膜厚度和孔径分布不均匀。
对于新型隔膜未来的研究方向,可以从3方面着手:①产品技术方面,针对不同新型隔膜的缺点需要对隔膜进行改性,在制备工艺上,静电纺丝是隔膜常用的制备工艺之一,但其本身也存在缺点,这种方法制备出的隔膜具有高的孔隙率和比表面积,如何实现规模化生产仍是一个挑战。相转化法是制备隔膜的另一种常用工艺,可以作为静电纺丝的补充。②安全性方面,力求隔膜在-40~200 ℃的温度范围内能够保持良好的物理结构和热稳定性,进而提升锂电池的安全性。③经济性方面,低成本的原材料是实现新型隔膜商品化推广所追求的目标。
参 考 文 献
张晓晨, 刘 文, 陈雪峰, 等. 锂离子电池隔膜研究进展[J]. 中国造纸, 2022, 41(2): 104-114. [百度学术]
ZHANG X C, LIU W, CHEN X F, et al. Research Progress of Lithium-ion Battery Separators[J]. China Pulp & Paper, 2022, 41(2): 104-114. [百度学术]
HU Z Y, ZHANG Y F, FAN W Z, et al. Flexible, High-temperature-resistant, Highly Conductive, and Porous Siloxane-based Single-ion Conducting Electrolyte Membranes for Safe and Dendrite-free Lithium-metal Batteries[J]. Journal of Membrane Science, DOI: 10.1016/j.memsci.2022.121275. [百度学术]
XING J X, LI J Y, FAN W X, et al. A Review on Nanofibrous Separators Towards Enhanced Mechanical Properties for Lithium-ion Batteries[J]. Composites Part B: Engineering, DOI: 10.1016/j.compositesb.2022.110105. [百度学术]
SEO J Y, LEE Y H, KIM J H, et al. Electrode-customized Separator Membranes Based on Self-assembled Chiral Nematic Liquid Crystalline Cellulose Nanocrystals as a Natural Material Strategy for Sustainable Li-metal Batteries[J]. Energy Storage Materials, 2022, 50: 783-791. [百度学术]
郭旭青, 杨 璐, 李振虎, 等. 锂离子电池隔膜研究进展及市场现状[J]. 合成纤维, 2022, 51(7): 46-49. [百度学术]
GUO X Q, YANG L, LI Z H, et al. Research Progress and Market Status of Lithium-ion Battery Separator[J]. Synthetic Fiber in China, 2022, 51(7): 46-49. [百度学术]
伍锦群, 李政蒿, 李 薇. ZIF-67掺杂纸基锂离子电池隔膜的制备及其性能研究[J]. 中国造纸, 2022, 41(11): 102-112. [百度学术]
WU J Q, LI Z H, LI W. Study on Preparation and Performance of ZIF-67 Doped Paper-based Lithium-ion Battery Separator[J]. China Pulp & Paper, 2022, 41(11): 102-112. [百度学术]
FRANCIS C F, KYRATZIS L L, BEST A S. Lithium-ion Battery Separators for Ionic-liquid Electrolytes: A Review. [J]. Advanced Materials, DOI: 10.1002/adma.201904205. [百度学术]
LIAO C, MU X W, HAN L F, et al. A Flame-retardant, High Ionic-conductivity and Eco-friendly Separator Prepared by Papermaking Method for High-performance and Superior Safety Lithium-ion Batteries[J]. Energy Storage Materials, 2022, 48: 123-132. [百度学术]
DAI X L, ZHANG X M, WEN J W, et al. Research Progress on High-temperature Resistant Polymer Separators for Lithium-ion Batteries[J]. Energy Storage Materials, 2022, 51: 638-659. [百度学术]
ZHAI P, LIU K X, WANG Z Y, et al. Multifunctional Separators for High-performance Lithium-ion Batteries[J]. Journal of Power Sources, DOI: 10.1016/j.jpowsour.2021.229973. [百度学术]
ZHANG L P, LI X L, YANG M R, et al. High-safety Separators for Lithium-ion Batteries and Sodium-ion Batteries: Advances and Perspective[J]. Energy Storage Materials, 2021, 41: 522-545. [百度学术]
ZHONG S J, YUAN B T, GUANG Z X, et al. Recent Progress in Thin Separators for Upgraded Lithium-ion Batteries[J]. Energy Storage Materials, 2021, 41: 805-841. [百度学术]
LIU X, QIN M H, SUN W, et al. Study on Cellulose Nanofibers/Aramid Fibers Lithium-ion Battery Separators by the Heterogeneous Preparation Method[J]. International Journal of Biological Macromolecules, 2022, 225: 1476-1486. [百度学术]
SUN C C, SONG Y Z, YAN Y, et al. Integrating Flexible PMIA Separator and Electrode for Dealing with Multi-aspect Issues in Li-S Batteries[J]. Electrochimica Acta, DOI: 10.1016/j.electacta.2020.136987. [百度学术]
YU L Y, GU J Y, PAN C, et al. Recent Developments of Composite Separators Based on High-performance Fibers for Lithium Batteries[J]. Composites Part A: Applied Science and Manufacturing, DOI: 10.1016/j.compositesa.2022.107132. [百度学术]
TANG W, LIU Q Q, LUO N, et al. High Safety and Electrochemical Performance Electrospun Para-aramid Nanofiber Composite Separator for Lithium-ion Battery[J]. Composites Science and Technology, DOI: 10.1016/j.compscitech.2022.109479. [百度学术]
黄子宇. 基于芳纶涂覆的锂离子电池隔膜制备及应用研究[D]. 广州: 华南理工大学, 2021. [百度学术]
HUANG Z Y. Preparation and Application of Lithium-ion Battery Separator Based on Aramid Coating[D]. Guangzhou: South China University of Technology, 2021. [百度学术]
肖 科. 间位芳纶纳米纤维基锂电池隔膜的制备及其性能研究[D]. 上海: 东华大学, 2016. [百度学术]
XIAO K. Preparation and Properties of Meta Aramid Nanofiber Based Lithium Battery Separator[D]. Shanghai: Donghua University, 2016. [百度学术]
赵慧娟. 聚间苯二甲酰间苯二胺纳米纤维锂二次电池隔膜的研究[D]. 天津: 天津工业大学, 2021. [百度学术]
ZHAO H J. Study on Polyisophthaloyl-m-phenylenediamine Nanofiber Membrane for Lithium Secondary Battery[D]. Tianjin: Tiangong University, 2021. [百度学术]
DENG N P, WANG L Y, FENG Y, et al. Co-based and Cu-based MOFs Modified Separators to Strengthen the Kinetics of Redox Reaction and Inhibit Lithium-dendrite for Long-life Lithium-sulfur Batteries[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2020.124241. [百度学术]
LIU J W, WANG J N, ZHU L, et al. A High-safety and Multifunctional MOFs Modified Aramid Nanofiber Separator for Lithium-sulfur Batteries[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2021.128540. [百度学术]
乔利娜. 基于间位芳纶的锂离子电池隔膜制备及聚多巴胺改性研究[D]. 天津: 天津大学, 2020. [百度学术]
QIAO L N. Study on Preparation of Lithium-ion Battery Separator Based on Meta Aramid Fiber and Modification of Polydopamine [D]. Tianjin: Tianjin University, 2020. [百度学术]
ZHANG H, ZHANG Y, XU T G, et al. Poly(m-phenylene isophthalamide) Separator for Improving the Heat Resistance and Power Density of Lithium-ion Batteries[J]. Journal of Power Sources, 2016, 329: 8-16. [百度学术]
徐隹军, 潘捷苗, 陈 亮, 等. 先进隔膜材料在锂离子电池中的研究进展[J]. 高分子通报, 2020(12): 63-73. [百度学术]
XU X J, PAN J M, CHEN L. Research Progress of Advanced Separator Materials in Lithium-ion Batteries[J]. Polymer Bulletin, 2020(12): 63-73. [百度学术]
王建杰. SiO2改性间位芳纶锂离子电池隔膜的制备及性能研究[D]. 天津: 天津大学, 2020. [百度学术]
WANG J J. Preparation and Performance of SiO2 Modified Meta Aramid Lithium-ion Battery Separator[D]. Tianjin: Tianjin University, 2020. [百度学术]
CHEN Z, LIN Q F, LI Y H, et al. Fabrication and Application of TiO2-modified PMIA Separators with Strong Mechanical Properties in Lithium-ion Batteries [J]. Ionics, 2021, 28(1): 117-125. [百度学术]
HUANG Z Y, CHEN Y F, HAN Q Y, et al. Vapor-induced Phase Inversion of Poly (m-phenylene isophthalamide) Modified Polyethylene Separator for High-performance Lithium-ion Batteries[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2021.132429. [百度学术]
KARGARZADEH H, MARIANO M, GOPAKUMAR D, et al. Advances in Cellulose Nanomaterials[J]. Cellulose, 2018, 25(4): 2151-2189. [百度学术]
杨保宏, 田国栋, 田超超, 等. 基于电纺预处理溶解浆的纤维素复合膜制备与应用[J]. 中国造纸学报, 2022, 37(4): 84-91. [百度学术]
YANG B H, TIAN G D, TIAN C C, et al. Preparation and Application of Cellulose Composite Membrane Based on Electrospun Pretreated Dissolved Pulp[J]. Transactions of China Pulp and Paper, 2022, 37 (4): 84-91. [百度学术]
DING Z J, CHEN T Y, ZHOU Y M, et al. Preparation and Characterization of Co3O4/Graphene/Cellulose Nanofiber Composite Films[J]. Paper and Biomaterials, 2022, 7(2): 27-36. [百度学术]
SHENG J, TONG S H, HE Z B, et al. Recent Developments of Cellulose Materials for Lithium-ion Battery Separators[J]. Cellulose, 2017, 24(10): 4103-4122. [百度学术]
陶嘉诚. 天丝基锂离子电池隔膜的制备与研究[D]. 上海: 东华大学, 2016. [百度学术]
TAO J C. Preparation and Study of the Separator for Lithium-ion Batteries Based on Tencel[D]. Shanghai: Donghua University, 2016. [百度学术]
ZHANG J J, KONG Q S, LIU Z H, et al. A Highly Safe and Inflame Retarding Aramid Lithium-ion Battery Separator by a Papermaking Process[J]. Solid State Ionics, 2013, 245/246: 49-55. [百度学术]
黄秋美, 赵传山, 李 霞, 等. 高性能生物质纤维基锂电池隔膜研究进展[J]. 中国造纸, 2021, 40(1): 84-94. [百度学术]
HUANG Q M, ZHAO C S, LI X, et al. Research Progress of High-performance Biomass Fiber-based Lithium Battery Separators[J]. China Pulp & Paper, 2021, 40 (1): 84-94. [百度学术]
ZHU C Q, ZHANG J X, XU J, et al. Facile Fabrication of Cellulose/Polyphenylene Sulfide Composite Separator for Lithium-ion Batteries[J]. Carbohydrate Polymers, DOI: 10.1016/j.carbpol.2020.116753. [百度学术]
ZHANG S F, LUO J, DU M, et al. Safety and Cycling Stability Enhancement of Cellulose Paper-based Lithium-ion Battery Separator by Aramid Nanofibers[J]. European Polymer Journal, DOI: 10.1016/j.eurpolymj.2022.111222. [百度学术]
DONG G X, LI H J, WANG Y, et al. Electrospun PAN/Cellulose Composite Separator for High Performance Lithium-ion Battery[J]. Ionics, 2021, 27(7): 2955-2965. [百度学术]
WANG S, ZHANG D L, SHAO Z Q, et al. Cellulosic Materials-enhanced Sandwich Structure-like Separator via Electrospinning towards Safer Lithium-ion Battery[J]. Carbohydrate Polymers, 2019, 214: 328-336. [百度学术]
HUANG F L, XU Y F, PENG B, et al. Coaxial Electrospun Cellulose-Core Fluoropolymer-shell Fibrous Membrane from Recycled Cigarette Filter as Separator for High Performance Lithium-ion Battery[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(5): 932-940. [百度学术]
COSTA C M, LANCEROS-MENDEZ S. Recent Advances on Battery Separators Based on Poly(vinylidene fluoride) and Its Copolymers for Lithium-ion Battery Applications[J]. Current Opinion in Electrochemistry, DOI: 10.1016/j.coelec.2021.100752. [百度学术]
CHEN Y, QIU L L, MA X Y, et al. Electrospun Cellulose Polymer Nanofiber Membrane with Flame Resistance Properties for Lithium-ion Batteries[J]. Carbohydrate Polymers, DOI: 10.1016/j.carbpol.2020.115907. [百度学术]
YANG M, JI Y, DONG Y, et al. Talcum-doped Composite Separator with Superior Wettability and Heatproof Properties for High-rate Lithium Metal Batteries[J]. Chinese Chemical Letters, DOI: 10.1016/j.cclet.2021.12.079. [百度学术]
PEI H C, CHEN J K, LIU H, et al. Ionic Conductivity Enhanced by Crown Ether Bridges for Lithium-ion Battery Separators[J]. Applied Surface Science, DOI: 10.1016/j.apsusc.2022.155030. [百度学术]
BARBOSA J C, DIAS J P, LANCEROS-MENDEZ S, et al. Recent Advances in Poly(vinylidene fluoride) and Its Copolymers for Lithium-ion Battery Separators[J]. Membranes, DOI: 10.3390/membranes8030045. [百度学术]
BARBOSA J C, GONCALVES R, VALVERDE A, et al. Metal Organic Framework Modified Poly(vinylidene fluoride-co-hexafluoropropylene) Separator Membranes to Improve Lithium-ion Battery Capacity Fading[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2022.136329. [百度学术]
LENG X L, XIAO W, YANG M D, et al. Boosting the Cycle Stability and Safety of Lithium-sulfur Batteries via a Bilayer, Heat-treated Electrospun Separator[J]. Electrochimica Acta, DOI: 10.1016/j.electacta.2022.141506. [百度学术]
YU J F, DONG N X, LIU B X, et al. A Newly-developed Heat-resistance Polyimide Microsphere Coating to Enhance the Thermal Stability of Commercial Polyolefin Separators for Advanced Lithium-ion Battery[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2022.136314. [百度学术]
WU D Y, DONG N X, WANG R H, et al. In Situ Construction of High-safety and Non-flammable Polyimide “Ceramic” Lithium-ion Battery Separator via SiO2 Nano-encapsulation[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2021.129992. [百度学术]
WANG Y, GUO M H, FU H, et al. Thermotolerant Separator of Cross-linked Polyimide Fibers with Narrowed Pore Size for Lithium-ion Batteries[J]. Journal of Membrane Science, DOI: 10.1016/j.memsci.2022.121004. [百度学术]
乔铭宇. 静电纺丝制备锂离子电池用聚酰亚胺复合隔膜及其性能研究[D]. 广州: 广东工业大学, 2022. [百度学术]
QIAO M Y. Study on Preparation and Properties of Polyimide Composite Membranes for Lithium-ion Batteries by Electrospinning[D]. Guangzhou: Guangdong University of Technology, 2022. [百度学术]
LIU X, ZHAO J F, WANG J, et al. Electrolyte-philic and Thermal-resistant Polyimide Separator Enhances the Performance of Flexible Silicon/Carbon Nanofibers for Lithium-ion Batteries[J]. Journal of Energy Storage, DOI: 10.1016/j.est.2022.105324. [百度学术]
LIANG Y Z, JI L W, GUO B K, et al. Preparation and Electrochemical Characterization of Ionic-conducting Lithium Lanthanum Titanate Oxide/Polyacrylonitrile Submicron Composite Fiber-based Lithium-ion Battery Separators[J]. Journal of Power Sources, 2011, 196(1): 436-441. [百度学术]
GUO P Q, JIANG P F, CHEN W X, et al. Bifunctional Al2O3/Polyacrylonitrile Membrane to Suppress the Growth of Lithium Dendrites and Shuttling of Polysulfides in Lithium-sulfur Batteries[J]. Electrochimica Acta, DOI: 10.1016/j.electacta.2022.140955. [百度学术]
LENG X L, YANG M D, LI C P, et al. High-performance Separator for Lithium-ion Battery Based on Dual-hybridizing of Materials and Processes[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2021.133773. [百度学术]
KANG S H, JANG J K , JEONG H Y, et al. Polyacrylonitrile/Phosphazene Composite-based Heat-resistant and Flame-retardant Separators for Safe Lithium-ion Batteries[J]. ACS Applied Energy Materials, 2022, 5(2): 2452-2461. [百度学术]
KANG S H, JEONG H Y, KIM T H, et al. Aluminum Diethylphosphinate-incorporated Flame-retardant Polyacrylonitrile Separators for Safety of Lithium-ion Batteries[J]. Polymers, DOI: 10.3390/polym14091649. [百度学术]
XIE K, YU S, WANG P, et al. Polyethylene Terephthalate-based Materials for Lithium-ion Battery Separator Applications: A Review Based on Knowledge Domain Analysis[J]. International Journal of Polymer Science, DOI: 10.1155/2021/6694105. [百度学术]
CAI H P, TONG X, CHEN K, et al. Electrospun Polyethylene Terephthalate Nonwoven Reinforced Polypropylene Separator: Scalable Synthesis and Its Lithium Ion Battery Performance[J]. Polymers, DOI: 10.3390/polym10060574. [百度学术]
ZHOU Y T, YANG J, LIANG H Q, et al. Sandwich-structured Composite Separators with an Anisotropic Pore Architecture for Highly Safe Li-ion Batteries[J]. Composites Communications, 2018, 8: 46-51. [百度学术]
ZHU C, NAGAISHI T, SHI J, et al. Enhanced Wettability and Thermal Stability of a Novel Polyethylene Terephthalate-based Poly(Vinylidene Fluoride) Nanofiber Hybrid Membrane for the Separator of Lithium-ion Batteries[J]. ACS Applied Materials Interfaces, 2017, 9(31): 26400-26406. [百度学术]
MENG F, GAO J, ZHANG M, et al. Enhanced Safety Performance of Automotive Lithium-ion Batteries with Al2O3-coated Non-woven Separator[J]. Batteries & Supercaps, 2020, 4(1): 146-151. [百度学术]
SEUNG-GYU L, HYE-DAM J, CHAN K, et al. Electro-spun Poly(vinylidene fluoride) Nanofiber Web as Separator for Lithium Ion Batteries: Effect of Pore Structure and Thickness[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(1): 956-961. [百度学术]
DONG T, ARIFEEN W U, CHOI J, et al. Surface-modified Electrospun Polyacrylonitrile Nano-membrane for a Lithium-ion Battery Separator Based on Phase Separation Mechanism[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2020.125646. [百度学术]
ZOU Z H, HU Z Y, PU H T. Lithium-ion Battery Separators Based on Nanolayer Co-extrusion Prepared Polypropylene Nanobelts Reinforced Cellulose[J]. Journal of Membrane Science, DOI: 10.1016/j.memsci.2022.121120. CPP [百度学术]