摘要
本研究以苯甲酰氯和不同碳链长度的脂肪酰氯(乙酰氯、辛酰氯和硬脂酰氯)为酯化剂、吡啶为催化剂,在二氯甲烷中对大豆茎秆气凝胶进行疏水改性,并对气凝胶的羟基取代度(DS)、多孔结构、压缩强度、水接触角(CA)、油水分离效果及循环使用性能进行探究。结果表明,疏水酯化后气凝胶的孔隙率减少,导致其吸油倍率略微降低,但压缩强度和CA显著增加。乙酰氯改性气凝胶的DS值较高(1.07),但疏水效果不佳;空间位阻和共轭效应使得苯甲酰氯改性气凝胶的DS值较低(0.58),CA仅为91°,但压缩强度显著提高,为855 kPa;辛酰氯和硬脂酰氯改性气凝胶的DS值分别为0.88和0.64,CA分别为123°和144°,具有良好的油水分离效果和循环使用性。
频繁发生的溢油事故和工业含油废水的违规排放对生态环境和人类健康造成严重威
目前,提高木质纤维气凝胶疏水性能的方法主要是通过酯化、醚化或接枝共聚等化学反应,将亲水性羟基转化为酯基、醚基或其他疏水性基团,从而提高其油水选择性。酯化反应的机理非常明确且副产物较少,引起了研究者的广泛关注。木质纤维气凝胶的酯化可分为均相酯化和非均相酯化,均相酯化因需要溶剂溶解而过程繁琐,而非均相酯化包含固液两相的纤维素酯化改性体系,可以使纤维素不发生溶解、溶胀而进行酯化反应,所以非均相酯化较适合对木质纤维进行改性。近年来很多研究者热衷于通过化学气相沉积(CVD)法对木质纤维气凝胶进行疏水改
本研究以农业废弃物大豆茎秆为原料,通过溶解-再生制备木质纤维气凝胶,再以二氯甲烷为液体反应介质,苯甲酰氯和不同碳链长度的脂肪酰氯(乙酰氯、辛酰氯和硬脂酰氯)为酯化试剂,吡啶为催化剂,对木质纤维气凝胶进行疏水改性,并探究不同酰氯对气凝胶酯化程度、微观形貌、多孔结构、压缩强度、疏水性能、油水分离性能及循环使用性的影响。
大豆茎秆,采自江苏盐城,经微型粉碎机粉碎后筛选出直径0.177~0.420 mm的粉末,经苯-醇溶液(V苯∶V醇=2∶1)抽提24 h以除去其所含萜烯类化合物、树脂酸和脂肪酸等有机溶剂抽出物,最后经真空干燥得苯-醇抽提后绝干大豆茎秆粉末。
乙二胺(EDA),分析纯,太仓沪试试剂有限公司;氯化锂(LiCl),分析纯,北京百灵威科技有限公司;苯甲酰氯、乙酰氯、辛酰氯和硬脂酰氯,均为化学纯,上海阿拉丁生化科技有限公司;二甲基亚砜(DMSO)、二氯甲烷、吡啶、乙醇、叔丁醇等,均为分析纯,南京化学试剂股份有限公司。
DF-101S恒温磁力搅拌器,南京科尔仪器设备有限公司;Biosafer-10A冷冻干燥机,南京赛飞有限公司;Quanta 200环境扫描电子显微镜(SEM),美国FEI公司;ASAP2020超高性能全自动气体吸附仪,美国麦克公司;SLBL 500N拉伸压缩测试仪,日本岛津公司;VERTEX 80V傅里叶变换红外光谱仪(FT-IR),德国Bruker公司;AXIS UltraDLD X射线光电子能谱仪(XPS),日本岛津公司;T200-Auto3 Plus光学接触角测试仪,瑞典百欧林。
脱木质素处理:选用亚氯酸钠/乙酸法对原料进行脱木质素处
EDA处理:取10 g LC-4(绝干质量)浸入200 mL EDA中,在室温下搅拌24 h后,过滤并冷冻干燥得到木质纤维与EDA的复合物(LC-EDA)。在50 mL去离子水中加入0.3 g LC-EDA后强力搅拌15 min,以甲基橙为指示剂,以0.1 mol/L盐酸作滴定液进行酸碱滴定,测得LC-EDA中残余EDA的含量为22.40%。
参照文献[
在100 mL二氯甲烷中分别加入0.05 mol不同类别酰氯(乙酰氯、苯甲酰氯、辛酰氯或硬脂酰氯)和吡啶,搅拌均匀后加入LA-4-2%,在60 ℃下冷凝回流反应4 h。反应后的气凝胶用乙醇浸泡洗涤,以除去二氯甲烷和未反应的酯化试剂等,再用叔丁醇置换乙醇,经冷冻干燥得到疏水木质纤维气凝胶,制备流程如

图1 疏水木质纤维气凝胶的制备流程
Fig. 1 Schematic diagram of hydrophobic lignocellulose aerogels preparation
化学结构:采用溴化钾压片法对气凝胶进行FT-IR测试,波数范围400~4000 c
气凝胶的孔隙率(P,%)按照
(1) |
式中,为气凝胶质量,g;V为气凝胶体积,c
在室温下,采用称重法测定气凝胶的吸油倍率。将气凝胶浸泡在50 mL的油品(柴油、硅油、二氯甲烷或甲苯)中24 h后取出,用滤纸擦净凝胶表面多余的油,称取重量并计算凝胶对不同油品的吸油倍率。吸油倍率(,%)按
×100% | (2) |
式中,和分别表示吸附前和吸附时间为t时的凝胶质量,g。

图2 气凝胶的FT-IR谱图
Fig. 2 FT-IR spectra of aerogels

图3 气凝胶的C 1s谱图
Fig. 3 C 1s spectra of aerogels
气凝胶样品 | O/C | C1/% | C2/% | C3/% | C4/% | DS |
---|---|---|---|---|---|---|
LA-4-2% | 0.81 | 7.45 | 60.64 | 31.91 | 2.69 | |
LAHE-C2 | 0.50 | 66.07 | 15.28 | 2.25 | 16.40 | 1.07 |
LAHE-C7 | 0.44 | 56.02 | 24.33 | 5.34 | 14.13 | 0.58 |
LAHE-C8 | 0.39 | 65.34 | 17.05 | 2.56 | 15.06 | 0.88 |
LAHE-C18 | 0.30 | 70.93 | 15.57 | 3.46 | 10.03 | 0.64 |
纤维素酯及其衍生物的取代度(DS)通过O—CO和C—O的比值计

图4 气凝胶的SEM图
Fig. 4 SEM images of aerogels
在改性前后,气凝胶断面结构均与表面结构存在明显差异,其表面孔道坍塌,但内部却疏松多孔。这可能是由于在凝胶化时,气凝胶表面最先接触到乙醇,其结构被快速固定,而乙醇向气凝胶内部扩散的速度缓慢,纤维素链有较多的时间进行松弛重排,从而可获得三维网络结
利用全自动气体吸附仪对气凝胶的多孔结构进行分析,结果见

图5 气凝胶的N2吸附-脱附曲线
Fig. 5 N2 adsorption-desorption isotherms of aerogels
气凝胶样品 | 比表面积/ | 平均孔径Dv/nm | 孔隙率/% |
---|---|---|---|
LA-4-2% | 178.89 | 22.41 | 96.08 |
LAHE-C2 | 98.44 | 22.90 | 94.16 |
LAHE-C7 | 69.66 | 23.48 | 91.03 |
LAHE-C8 | 74.43 | 23.18 | 92.97 |
LAHE-C18 | 53.21 | 33.20 | 90.38 |
压缩强度代表了气凝胶抵抗外部载荷的能力,结果如

图6 气凝胶的应力-应变曲线
Fig. 6 Stress-strain curves of aerogels
为探究在酯化改性前后气凝胶疏水及吸油性能的变化情况,对油或水在气凝胶表面的润湿性能及水接触角进行检测,结果如

图7 气凝胶的油/水吸收性能和水接触角
Fig. 7 Oil or water absorption performance and water contact angle of aerogels
酯化前后气凝胶水接触角的显著变化主要由以下原因导致:其一,酯化改性使得气凝胶中部分羟基被取代,并引入了非极性的基团,降低了气凝胶的表面
气凝胶在酯化改性前后对不同油品的吸附结果如

图8 (a)气凝胶的吸油倍率;(b)气凝胶的循环使用性能;(c)气凝胶LAHE-C8清除水面柴油;(d)气凝胶LAHE-C8清除水下二氯甲烷;(e)气凝胶的循环使用过程
Fig. 8 (a) Oil absorption ratio of aerogels; (b) recycling performance of aerogels; (c) removal of diesel oil from water surface by aerogel LAHE-C8; (d) removal of underwater dichloromethane by aerogel LAHE-C8; (e) recycling process of aerogel
在培养皿中装满去离子水并加入0.5 g柴油(苏丹红染色),测试凝胶LAHE-C8对水面轻质油的去除能力。如
在实际应用中,吸油材料的循环使用性能也至关重要。
本研究以农业废弃物大豆茎秆为原料,通过溶解-再生的过程制备木质纤维气凝胶,再以二氯甲烷为液体反应介质,苯甲酰氯和不同碳链长度的脂肪酰氯(乙酰氯、辛酰氯和硬脂酰氯)为酯化试剂,吡啶为催化剂,对气凝胶进行疏水改性,并探究不同酰氯对气凝胶酯化程度、微观形貌、多孔结构、压缩强度、疏水性能、油水分离性能及循环使用性的影响。
3.1 疏水改性后气凝胶的孔隙率有所降低,导致吸油倍率略微降低,但抗压强度和疏水性能显著提高。其中,乙酰氯碳链短,反应活性高,经其改性的气凝胶酯化程度较高(取代度为1.07),但疏水效果不佳。
3.2 随着烷基链长度的增加,气凝胶的酯化程度降低,而压缩强度和疏水效果提高。经辛酰氯和硬脂酰氯改性后,气凝胶水接触角分别达到123°和144°,具有较好的油水分离效果和循环使用性。
3.3 由于空间位阻和共轭效应的双重影响,导致苯甲酰氯改性的气凝胶酯化程度较低,其水接触角仅为90.1°,但刚性基团的引入使得气凝胶的压缩强度提高了5.99倍。
参 考 文 献
SHI G G, SHEN Y Q, MU P, et al. Effective separation of surfactant-stabilized crude oil-in-water emulsions by using waste brick powder-coated membranes under corrosive conditions[J]. Green Chemistry, 2020,22:1345-1352. [百度学术]
ZHAO C L, ZHOU J Y, YAN Y, et al. Application of coagulation/flocculation in oily wastewater treatment: A review[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2020.142795. [百度学术]
KUKKAR D, RANI A, KUMAR V, et al. Recent advances in carbon nanotube sponge-based sorption technologies for mitigation of marine oil spills[J]. Jounal of Colloid and Interface Science, 2020, 570: 411-422. [百度学术]
HALYSH V, SEVASTYANOVA O, PIKUS S, et al. Sugarcane bagasse and straw as low-cost lignocellulosic sorbents for the removal of dyes and metal ions from water[J]. Cellulose, 2020, 27: 8181-8197. [百度学术]
ZHUO L, MA C, XIE F, et al. Methylcellulose strengthened polyimide aerogels with excellent oil/water separation performance[J]. Cellulose, 2020, 27: 7677-7689. [百度学术]
ZHOU S, LIU P, WANG M, et al. Sustainable, Reusable, and Superhydrophobic Aerogels from Microfibrillated Cellulose for Highly Effective Oil/Water Separation[J]. ACS Sustainable Chemistry & Engineering, 2016, 4: 6409-6416. [百度学术]
HE J, ZHAO H, LI X, et al. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery [J]. Journal of Hazardous Materials,2018, 346: 199-207. [百度学术]
高天亮, 赵传山, 李 霞, 等. CNF/活性炭纸基材料对水中余氯去除性能研究 [J]. 中国造纸, 2022, 41(1): 6-14. [百度学术]
GAO T L, ZHAO C S, LI X, et al. Study on the Removal Performance of CNF/Activated Carbon Paper-based Materials for Residual Chlorine in Water[J]. China Pulp & Paper, 2022, 41(1): 6-14. [百度学术]
韩营营, 章飞洋, 吴锦涵, 等. 疏水亲油型纳米纤维素气凝胶的制备与吸油性能研究 [J]. 中国造纸,2023, 42(2): 11-19. [百度学术]
HAN Y Y, ZHANG F Y, WU J H, et al. Preparation and Oil Absorption Properties of Hydrophobic and Oil-philic Nanocellulose Aerogel[J]. China Pulp & Paper, 2023, 42(2): 11-19. [百度学术]
SARODE S, UPADHYAY P, KHOAA M A, et al. Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan[J]. International Journal of Biological Macromolecules, 2019, 121: 1086-1100. [百度学术]
YANG W, YUEN A C Y, LI A, et al. Recent progress in bio-based aerogel absorbents for oil/water separation[J]. Cellulose, 2019, 26: 6449-6476. [百度学术]
TRAN D T, NGUYEN S T, DO N D, et al. Green aerogels from rice straw for thermal, acoustic insulation and oil spill cleaning applications[J]. Materials Chemistry and Physics, DOI: 10.1016/j.matchemphys.2020.123363. [百度学术]
吴湘楠, 杨 俊, 韩营营, 等. 超疏水纸基材料的制备及其性能分析 [J]. 中国造纸,2022, 41(5): 46-51. [百度学术]
WU X N, YANG J, HAN Y Y, et al. Preparation and Properties Analysis of Superhydrophobic Paper-based Material[J]. China Pulp & Paper, 2022, 41(5): 46-51. [百度学术]
易 凯, 付时雨. 纤维素基超疏水材料的制备与应用研究进展 [J]. 中国造纸,2022, 41(2): 115-121. [百度学术]
YI K, FU S H. Research Progress in Preparation and Application of Cellulose-based Superhydrophobic Materials[J]. China Pulp & Paper, 2022, 41(2): 115-121. [百度学术]
陈擘威,吴 英,周明佳,等. 掺锌壳聚糖气凝胶的制备与表征 [J]. 精细化工,2019,36(9):1763-1766. [百度学术]
CHEN B W, WU Y, ZHOU M J, et al. Synthesis and characterization of Zn-doped chitosan aerogels[J]. Fine Chemicals, 2019, 36(9): 1763-1766. [百度学术]
RAFIEIAN F, HOSSEINI M, JONOOBI M, et al. Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment[J]. Cellulose, 2018, 25: 4695-4710. [百度学术]
LEAL S, CRISTELO C, SILVESTRE S, et al. Hydrophobic modification of bacterial cellulose using oxygen plasma treatment and chemical vapor deposition[J]. Cellulose, 2020, 27: 10733-10746. [百度学术]
Sluiter A, Hames B, Ruiz R, et al. Determination of structural carbohydrates and lignin in biomass: NREL/TP-510-42618[S]. USA: National Renewable Energy Laboratory, 2011. [百度学术]
SHANG Q Q, CHEN J Q, HU Y, et al. Facile fabrication of superhydrophobic cross-linked nanocellulose aerogels for oil-water separation[J]. Polymers, DOI: 10.3390/pohym13040625. [百度学术]
KANG X H, ZHANG Y, LI L H, et al. Enhanced methane production from anaerobic digestion of hybrid Pennisetum by selectively removing lignin with sodium chlorite[J]. Bioresource Technology, DOI: 10.1016/j.biortech.2019.122289. [百度学术]
LIU Z L, WU J X, XIA J Y, et al. Characterization of lignocellulose aerogels fabricated using a LiCl/DMSO solution[J]. Industrial Crops and Products, 2019, 131: 293-300. [百度学术]
伍锦秀, 董 勇, 夏剑雨, 等. 高吸液性木质纤维气凝胶的制备及表征 [J]. 林产化学与工业, 2020, 40(3): 52-60. [百度学术]
WU J X, DONG Y, XIA J Y, et al. Preparation and characterization of lignocellulosic aerogel with high liquid absorbability[J]. Chemistry and Industry of Forest Products, 2020, 40(3): 52-60. [百度学术]
XIA J Y, LIU Z L, CHEN Y, et al. Effect of lignin on the performance of biodegradable cellulose aerogels made from wheat straw pulp-LiCl/DMSO solution[J]. Cellulose, 2020, 27: 879-894. [百度学术]
陈 妍, 王梓鑫, 李奇臻, 等. 木质纤维吸油气凝胶的制备及性能 [J]. 林产化学与工业, 2019, 39(4): 49-55. [百度学术]
CHEN Y, WANG Z X, LI Q Z, et al. Synthesis and characterization of lignocellulose oil-absorbing aerogels[J]. Chemistry and Industry of Forest Products, 2019, 39(4): 49-55. [百度学术]
CAI J, KIMURA S, WADA M, et al. Cellulose aerogels from aqueous alkali hydroxide-urea solution[J]. ChemSusChem, 2008, 1: 149-154. [百度学术]
MENEZES A J D, SIQUEIRA G, CURVELO A A S, et al. Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites[J]. Polymer, 2009, 50: 4552-4563. [百度学术]
GARS M L, ROGER P, BELGACEM N, et al. Role of solvent exchange in dispersion of cellulose nanocrystals and their esterification using fatty acids as solvents[J]. Cellulose, 2020, 27: 4319-4336. [百度学术]
VUOTI S, TALJA R, JOHANSSON L S, et al. Solvent impact on esterification and film formation ability of nanofibrillated cellulose[J]. Cellulose, 2013, 20: 2359-2370. [百度学术]
VUOTI S, LAATIKAINEN E, HEIKKINEN H, et al. Chemical modification of cellulosic fibers for better convertibility in packaging applications[J]. Carbohydrate Polymers, 2013, 96: 549-559. [百度学术]
Uschanov P, Johansson L S, Maunu S L, et al. Heterogeneous modification of various celluloses with fatty acids[J]. Cellulose, 2010,18: 393-404. [百度学术]
PAPPU V K S, KANYI V, SANTHANAKRISHNAN A, et al. Butyric acid esterification kinetics over Amberlyst solid acid catalysts: The effect of alcohol carbon chain length[J]. Bioresource Technology, 2013, 130: 793-797. [百度学术]
BISMARCK A, ARANBERRI-ASKARGORTA I, SPRINGER J, et al. Surface characterization of flax, hemp and cellulose fibers; Surface properties and the water uptake behavior[J]. Polymer Composites, 2002, 23: 872-894. [百度学术]
WU H, WU L, LU S, et al. Robust superhydrophobic and superoleophilic filter paper via atom transfer radical polymerization for oil/water separation [J]. Carbohydrate Polymers, 2018, 181: 419-425. [百度学术]
LI N, YUE Q, GAO B, et al. One-step synthesis of peanut hull/graphene aerogel for highly efficient oil-water separation [J]. Journal of Cleaner Production, 2019, 207: 764-771. [百度学术]