摘要
本研究主要探究了热活化过硫酸盐(TAP)氧化法对造纸废水处理的可行性。首先研究温度和初始Na2S2O8浓度对TAP体系的影响得出最优体系;接着讨论无机阳离子和阴离子的存在对TAP体系的影响;随后深入分析TAP体系的氧化机理以及污染物可能的降解途径;最后将TAP体系用于处理实际造纸废水。结果表明,在温度70 ℃和Na2S2O8 摩尔浓度16 mmol/L的优化条件下,模拟有机造纸废水的CODCr在360 min内降解率达84.2%。而基于SO自由基的TAP体系受无机离子影响较小。另外,TAP体系中主要活性物质是∙OH和SO自由基,二者在模拟有机污染物的降解中发挥着主要作用。此外,其他活性自由基在污染物的降解过程中起到辅助作用,如
传统造纸工业具有耗水量高、废水污染物浓度高及废水难处理等问
AOPs在深度处理有机污染物领域已被认为是具有广阔前景的氧化技术。AOPs一般分为光化学氧化、臭氧氧化和Fenton氧化。由于反应条件限制和经济成本影响,光化学氧化和臭氧氧化在实际处理中的应用较少。而传统Fenton法作为研究最早的高级氧化技术,其在实际废水深度处理方面运用最为广泛,但该法同样具有缺点,如H2O2的快速消耗、大量的铁泥产生,以及仅在低pH值下发挥有效的功能
在AOPs中,基于硫酸盐自由基()衍生的过硫酸盐氧化法,因其高氧化还原电位(2.5~3.1 eV)、pH值适应性宽及较羟基自由基(∙OH)存留时间更长等优势,近年来受到越来越多的关
S2O + hv → | (1) |
S2O加热 → 2 | (2) |
S2O + M | (3) |
+ M | (4) |
+ H2O → ·OH + + | (5) |
+ O | (6) |
截至目前,在所有的活化方法中,热活化过硫酸盐(TAP)氧化法被认为是一种降解有机污染物非常有效和清洁的方
本研究采用模拟的林浆纸一体化造纸废水为研究对象,研究了TAP体系对其的氧化降解效果和机制,以及影响因素,包括反应温度和初始过硫酸盐浓度等。此外,还分别讨论共存的阴离子和阳离子对TAP降解废水效率的影响。通过自由基鉴定、自由基淬灭实验和中间产物预测,研究了造纸污染物的降解机制。最后,将TAP应用于实际的造纸废水生化出水的处理,并对其去除效率进行了评估。
造纸废水取自某林浆纸一体化经营模式的造纸企业,为生化处理出水,CODCr含量约为140 mg/L。过硫酸钠(Na2S2O8)、乳酸、无水硫酸钠、重铬酸钾、硫酸亚铁铵、硫酸、氢氧化钠、盐酸、叔丁醇、氯化钠、硫酸钙、硫酸镁均取自天津大茂化学试剂厂;1,10-菲啰啉、乙腈及葡萄糖取自广东光华科技有限公司;对羟基苯丙酸取自上海麦克林生化科技有限公司;硫酸银取自上海申博化学有限公司。
为保持实验过程的稳定性,实验中使用性质稳定的模拟有机废水。模拟有机废水由0.10 g/L葡萄糖、0.007 g/L对羟基苯丙酸和0.68 mmol/L乳酸组成,上述模拟有机废水的CODCr约为140 mg/L。
实验过程在提供连续热源的水浴恒温振荡器中进行。在模拟有机废水中加入一定浓度的过硫酸钠溶液,采用一定浓度的盐酸溶液将废水pH值调整到(3.0±0.1)。然后将混合溶液倒入深棕色的瓶子中,随后放入预设温度的水浴恒温振荡器中,于固定时间点采集水样并检测CODCr值。通过CODCr的去除率来评价模拟有机废水的去除效果,CODCr去除率计算见
CODCr去除率=(1-Ct/C0) × 100% | (7) |
式中,Ct是氧化过程中t时刻的CODCr浓度;C0是模拟有机废水的初始CODCr浓度。
ln (Ct/C0) =-kobs t | (8) |
R = (1-kobs, scavenger / kobs) × 100% | (9) |
式中,kobs是假一阶反应速率常数,其值通过拟合ln(Ct/C0)和t得到的直线斜率;t是反应时间;kobs, scavenger是加入猝灭剂后的反应速率常数。
为确定和评估参与TAP过程的主要活性自由基,进行电子自旋共振(ESR)分析和自由基淬灭实验。取100 μL水样,加入10 mg/L 5, 5-二甲基-1-吡咯烷-N-氧化物(DMPO)溶液。使用毛细管吸取该溶液,并将其加入石英核磁共振管,在电子自旋共振仪中进行测试。叔丁醇(TBA)被用作∙OH淬灭剂,甲醇(MeOH)和乙醇(EtOH)被视为和∙OH淬灭剂。对羟基苯丙酸和乳酸的浓度用UHPLC-CLASS超高效液相色谱法测定。对羟基苯丙酸在柱温30 ℃下,在紫外光波长274 nm处检测,保留时间为2 min。流速为0.15 mL/min,流动相为水和乙腈的混合物(60∶40,体积比)。乳酸在柱温为40 ℃下,在紫外光波长210 nm处检测,保留时间为2 min。流速为0.15 mL/min,流动相为0.1%磷酸溶液∶甲醇(97.5∶2.5,体积比)的混合物。葡萄糖的浓度通过3,5-二硝基水杨酸比色法(DNS)测
各污染物的中间产物用LC-MS进行分析,LC-MS的型号为water Xevo G2QTOF。测试前,样品需用0.45 μm的滤头过滤,装入液相色谱测定专用瓶中。测量条件为:柱温40 ℃,色谱柱为waters ACQUITY UPLC BEH C18,流速0.3 mL/min。质谱条件为:质量扫描范围50~600 Da,毛细管电压3 kV,离子源温度100 ℃。
实际废水中的有机化合物通过5975C GC-MS进行测定。样品制备为:取500 mL实际造纸废水,调节pH值≤2,采用中速定量滤纸过滤废水中的木质素有机物。然后,准确移取出400 mL滤液,置于分离漏斗中,再添加25 mL二氯甲烷,进行15 min的快速摇动使其充分混匀。随后等待静态分层,取出底部的有机相。重复上述步骤3次,将得到的有机相合并。接着通过投加一定量的无水硫酸钠于合并的有机相中,进行除水操作。最后使用旋转蒸发器浓缩有机相至约2 mL,用于GC-MS分析。
Na2S2O8初始物质的量浓度对TAP体系去除废水中CODCr的影响研究结果见

图1 不同Na2S2O8初始浓度和温度对TAP系统中CODCr去除率的影响
Fig. 1 Effects on CODCr removal in the TAP system at different initial Na2S2O8 concentrations and temperature
温度是影响TAP技术中一个关键因
实验室模拟废水不同于实际废水,实际废水其成分更复杂,无机离子在实际水体中无处不在,有必要研究不同阴、阳离子对TAP体系处理模拟有机废水中CODCr降解效率的影响。
为评估外部阴离子对模拟有机废水降解效率的影响,在反应液中加入不同浓度的阴离子。一般来说,NO、C

图2 共存无机离子对CODCr去除的影响
Fig. 2 Effect of co-existing inorganic ions on the removal of CODCr
注 pH值=2.0~3.0, [Na2S2O8]=16 mmol/L, T=70 ℃。
NO和H2PO作为自然水体中常见的无机阴离子,在造纸废水中较为少见,但仍有必要探究其少量存在对模拟有机废水处理的影响。如
NO | (10) |
NO+ ·OH → O | (11) |
H2PO + → SO+ H2PO (k < 7.0×1 | (12) |
H2PO +·OH → O | (13) |
SO | (14) |
SO | (15) |
如
C | (16) |
C | (17) |
C | (18) |
Cl+ Cl → 2C | (19) |
ClO | (20) |
由于造纸工艺中需要投加大量的无机盐,其出水中阳离子普遍存在。如
结果表明,对于存在的过硫酸盐体系中,无机阳离子影响模拟有机废水的降解作用较小。一是通过对比无机离子同自由基反应速率常数,C
为确定和评估参与TAP过程的主导活性自由基,电子自旋共振(ESR)分析和自由基淬灭实验是最常用的方法。一般来说, DPMO被用作自旋自由基捕获剂,可以与和∙OH反应,产生稳定的自旋加成产物,并由ESR探测器检

图3 TAP系统的ESR光谱
Fig. 3 ESR spectra of TAP system
注 pH值=2.0~3.0, [Na2S2O8]=16 mmol/L, T=70 ℃。
为进一步评估氧化活性物种对去除模拟有机废水中污染物的贡献,利用MeOH、EtOH和TBA作为自由基猝灭剂进行实验。基于反应速率常数分析,因为MeOH和EtOH与和∙OH自由基的反应速率常数很高(MeOHk =1.1×1

图4 自由基猝灭剂对模拟有机污染物降解的影响
Fig. 4 Effect of free radical scavengers on simulated organic pollutant degradation
注 pH值=2.0~3.0, [Na2S2O8]=16 mmol/L, T=70 ℃。
如
S2O + 2H2O → HO + 2SO + 3 | (21) |
HO + S2O → SO + | (22) |
2O + 2
(23)
·OH + (CH3)3COH → H2O + ·CH2C(CH3)2OH | (24) |
·OH + (CH3)3COH → H2O + (CH3)3CO· | (25) |
(CH3)3CO· → (CH3)2C=O + ·CH3 | (26) |
从
通过对比有、无自由基猝灭剂的情况,GLU的降解性能和反应速率常数见
采用LC-MS法测定在TAP体系降解模拟有机废水过程中可能产生的中间产物。基于LC-MS测试结果(见
污染物 | 序号 | 中间产物化学式 | 结构式 |
---|---|---|---|
HL | 1 | C9H10O4 | 对羟基苯丙酸甲酯 |
2 | C9H10O3 | 苯丙酸甲酯 | |
3 | C7H6O2 | 对羟基苯甲醛 | |
4 | C7H6O2 | 苯甲酸 | |
5 | C7H6O3 | 对羟基苯甲酸 | |
6 | C7H6O3 | 苯甲酸甲酯 | |
7 | C7H6O4 | 对羟基苯甲酸甲酯 | |
8 | C4H4O4 | 顺丁烯二酸 | |
9 | C2H2O4 | 草酸 | |
GLU | 1 | C6H12O7 | 葡萄糖酸 |
2 | C2H2O4 | 草酸 |

图5 模拟有机污染物可能的降解路径
Fig. 5 Modelling of possible degradation pathways of organic pollutants
注 pH值=2.0~3.0, [Na2S2O8]=16 mmol/L, T=70 ℃。
为验证TAP体系应用于实际废水深度处理的有效性,本研究选用实际制浆造纸二级生化出水作为目标废水,采用TAP体系对其进行深度处理。在物质的量Na2S2O8浓度为16 mmol/L下,进行不同pH环境(酸性(pH值=2~3)和中性(pH值=7))及不同温度(30和70 ℃)实验,结果如

图6 不同环境pH值及温度下,TAP体系对实际造纸废水的生化出水处理效果
Fig. 6 Biochemical effluent treatment of actual paper wastewater by TAP system at different ambient pH value and temperature
由
为进一步了解水样中有机物的变化情况,采用GC-MS进行检测。一般来说,经过二级生化处理的造纸废水中有机物的种类相对较少,但仍含有一些难降解的有机物和残留的降解中间产物,导致CODCr的含量较高。TAP体系处理前后的水样中主要有机化合物种类如
处理前 | 处理后 |
---|---|
3-甲基戊烷 | 3-甲基戊烷 |
2, 4-二甲基乙烷 | 四氯乙烯 |
二氯乙酸 | 十四烷 |
氯乙烷 | 十九烷 |
2, 3-二氯硝基苯 | 二十烷 |
乳酸 | 二十一烷 |
邻苯二甲酸二丁酯 | 二十四烷 |
二十烷 | 邻苯二甲酸单丁酯 |
二十一烷 | 二十八烷 |
二十四烷 | |
二十八烷 |
3.1 热活化过硫酸盐(TAP)体系对林浆纸一体化造纸废水的深度处理有着巨大潜力。其具有只需提供热源、操作简单和绿色环保等优点,是一项很有前景的实际应用技术。通过提高反应温度和过硫酸钠(Na2S2O8)的浓度,可以有效提高模拟有机污染物的降解效率。此外,即使无机离子共存于模拟有机废水中,对TAP体系抑制作用较弱,其中阴离子的抑制作用强于阳离子。在污染物的降解过程中,和∙OH在TAP体系中主要起作用,同时,其他活性自由基起着一定的辅助作用。
3.2 将TAP体系应用于实际造纸废水的生化出水同样取得有效成果。废水在pH值=2~3、温度为70 ℃、Na2S2O8物质的量浓度为16 mmol/L的TAP体系处理360 min后达到GB 3544—2008排放标准,其有机物的种类和含量大大降低,出水CODCr去除率达84.0%,色度降至8.96度。
参 考 文 献
KANG Z. Energy-saving strategies for the whole process of sewage treatment in paper mills [J]. Industrial Water Treatment, 2022, 42(10): 182-186. [百度学术]
柳 娜. “双碳”目标下中国制浆造纸工业绿色循环经济发展策略 [J]. 中国造纸, 2022, 41(12): 159-160. [百度学术]
LIU N. Strategies for The Development of a Green Circular Economy in China’s Pulp and Papermaking Industry Under the “Carbon Peaking and Carbon Neutrality” Target [J]. China Pulp & Paper, 2022, 41(12): 159-160. [百度学术]
KAMALI M, KHODAPARAST Z. Review on recent developments on pulp and paper mill wastewater treatment [J]. Ecotoxicology and Environmental Safety, 2015, 114: 326-342. [百度学术]
CHU H, WANG Z, LIU Y. Application of modified bentonite granulated electrodes for advanced treatment of pulp and paper mill wastewater in three-dimensional electrode system [J]. Journal of Environmental Chemical Engineering, 2016, 4(2): 1810-1817. [百度学术]
CIPUTRA S, ANTONY A, PHILLIPS R, et al. Comparison of treatment options for removal of recalcitrant dissolved organic matter from paper mill effluent [J]. Chemosphere, 2010, 81(1): 86-91. [百度学术]
VERMA M, HARITASH A K. Degradation of Amoxicillin by Fenton and Fenton-integrated hybrid oxidation processes [J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102886-102890. [百度学术]
JIMéNEZ S, ANDREOZZI M, MICó M M, et al. Produced water treatment by advanced oxidation processes [J]. Science of the Total Environment, 2019, 666: 12-21. [百度学术]
YAN J, LEI M, ZHU L, et al. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate [J]. Journal of Hazardous Materials, 2011, 186(2/3): 1398-1404. [百度学术]
SHI P, SU R, WAN F, et al. Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange Ⅱ in water by advanced oxidation technology based on sulfate radicals [J]. Applied Catalysis B: Environmental, 2012, 123/124: 265-272. [百度学术]
陈静静, 梁 郡, 王 曦. 制浆造纸废水联合深度处理技术应用及运行分析 [J]. 中国造纸, 2022, 41(12): 140-145. [百度学术]
CHEN J J, LIANG J, WANG X. Application and Operation Analysis of Combined Advanced Treatment Technology of Pulping and Papermaking Wastewater [J]. China Pulp & Paper, 2022, 41(12): 140-145. [百度学术]
LIU Z, REN X, DUAN X, et al. Remediation of environmentally persistent organic pollutants (POPs) by persulfates oxidation system (PS): A review [J]. Science of the Total Environment, DOI:10.1016/j.scitotenv.2022.160818. [百度学术]
SONAWANE S, RAYAROTH M P, LANDGE V K, et al. Thermally activated persulfate-based advanced oxidation processes-recent progress and challenges in mineralization of persistent organic chemicals: A review [J]. Current Opinion in Chemical Engineering, DOI:10.1016/j.coche.2022.100839. [百度学术]
ZOU Z, HUANG X, GUO X, et al. Efficient degradation of imidacloprid in soil by thermally activated persulfate process: Performance, kinetics, and mechanisms [J]. Ecotoxicology and Environmental Safety, DOI:10.1016/j.ecoenv.2022.113815. [百度学术]
LIU S, HOU X, XIN Q, et al. Degradation of rifamycin from mycelial dreg by activated persulfate: Degradation efficiency and reaction kinetics [J]. Science of the Total Environment, DOI:10.1016/J.SCITOTENV.2022.153229. [百度学术]
SUN Y, ZHAO J, ZHANG B T, et al. Oxidative degradation of chloroxylenol in aqueous solution by thermally activated persulfate: Kinetics, mechanisms and toxicities [J]. Chemical Engineering Journal, 2019, 368: 553-563. [百度学术]
ARVANITI O S, IOANNIDI A A, POLITI A, et al. Dexamethasone degradation in aqueous medium by a thermally activated persulfate system: Kinetics and transformation products [J]. Journal of Water Process Engineering, DOI:10.1016/j.jwpe.2022.103134. [百度学术]
LI G, WONG K H, ZHANG X, et al. Degradation of Acid Orange 7 using magnetic AgBr under visible light: The roles of oxidizing species [J]. Chemosphere, 2009, 76(9): 1185-1191. [百度学术]
MILLER G L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar [J]. Anal Chem, 2002, 31(3): 426-428. [百度学术]
DENG J, SHAO Y, GAO N, et al. Thermally activated persulfate (TAP) oxidation of antiepileptic drug carbamazepine in water [J]. Chemical Engineering Journal, 2013, 228: 765-771. [百度学术]
JI Y, DONG C, KONG D, et al. Heat-activated persulfate oxidation of atrazine: Implications for remediation of groundwater contaminated by herbicides [J]. Chemical Engineering Journal, 2015, 263: 45-54. [百度学术]
ROMERO A, SANTOS A, VICENTE F, et al. Diuron abatement using activated persulphate: Effect of pH, Fe(Ⅱ) and oxidant dosage [J]. Chemical Engineering Journal, 2010, 162(1): 257-265. [百度学术]
OLMEZ-HANCI T, ARSLAN-ALATON I, GENC B. Bisphenol A treatment by the hot persulfate process: Oxidation products and acute toxicity [J]. Journal of Hazardous Materials, 2013, 263: 283-290. [百度学术]
TAN C, GAO N, DENG Y, et al. Heat-activated persulfate oxidation of diuron in water [J]. Chemical Engineering Journal, 2012, 203: 294-300. [百度学术]
GHAUCH A, TUQAN A M, KIBBI N. Ibuprofen removal by heated persulfate in aqueous solution: A kinetics study [J]. Chemical Engineering Journal, 2012, 197: 483-492. [百度学术]
TSITONAKI A, PETRI B, CRIMI M, et al. In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review [J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1): 55-91. [百度学术]
JOHNSON R I, TRATNYEK P G,JOHNSON R O. Persulfate persistence under thermal activation conditions [J]. Environmental Science & Technology, 2008, 42(24): 9350-9356. [百度学术]
DOMINGUEZ C M, ROMERO A, LORENZO D, et al. Thermally activated persulfate for the chemical oxidation of chlorinated organic compounds in groundwater [J]. Journal of Environmental Management, 2020, 261: 110240-110249. [百度学术]
ZHAO J, SUN Y, WU F, et al. Oxidative Degradation of Amoxicillin in Aqueous Solution by Thermally Activated Persulfate [J]. Journal of Chemistry, DOI:10.1155/2019/2505823. [百度学术]
WALDEMER R H, TRATNYEK P G, JOHNSON R L. et al. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products [J]. Environmental Science & Technology, 2007, 41(3): 1010-1015. [百度学术]
ZHOU T, ZOU X, MAO J, et al. Decomposition of sulfadiazine in a sonochemical FeO-catalyzed persulfate system: Parameters optimizing and interferences of wastewater matrix [J]. Applied Catalysis B: Environmental, 2016, 185: 31-41. [百度学术]
MARUTHAMUTHU P, NETA P. Phosphate radicals. Spectra, acid-base equilibriums, and reactions with inorganic compounds [J]. The Journal of Physical Chemistry, 1978, 82(6): 710-713. [百度学术]
GAO Y Q, GAO N Y, WANG W, et al. Ultrasound-assisted heterogeneous activation of persulfate by nano zero-valent iron (nZVI) for the propranolol degradation in water [J]. Ultrasonics Sonochemistry, 2018, 49: 33-40. [百度学术]
SHAH N S, HE X, KHAN H M, et al. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: A comparative study [J]. Journal of Hazardous Materials, 2013, 263: 584-592. [百度学术]
SHARMA J, MISHRA I M, DIONYSIOU D D, et al. Oxidative Removal of Bisphenol A by UV-C/peroxymonosulfate (PMS): Kinetics, Influence of Co-existing Chemicals and Degradation Pathway [J]. Chemical Engineering Journal, 2015, 276: 193-204. [百度学术]
BI W, WU Y, WANG X, et al. Degradation of oxytetracycline with under simulated solar light [J]. Chemical Engineering Journal, 2016, 302: 811-818. [百度学术]
LUO C, JIANG J, MA J, et al. Oxidation of the odorous compound 2,4,6-trichloroanisole by UV activated persulfate: Kinetics, products, and pathways [J]. Water Research, 2016, 96: 12-21. [百度学术]
WENG C H, TAO H. Highly efficient persulfate oxidation process activated with FeO aggregate for decolorization of reactive azo dye remazol golden yellow [J]. Arabian Journal of Chemistry, 2018, 11(8): 1292-300. [百度学术]
WANG Z, YUAN R, GUO Y, et al. Effects of chloride ions on bleaching of azo dyes by C
RULE K L, EBBETT V R, VIKESLAND P J. Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan [J]. Environmental Science & Technology, 2005, 39(9): 3176-3185. [百度学术]
GAO H, CHEN J, ZHANG Y, et al. Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system [J]. Chemical Engineering Journal, 2016, 306: 522-530. [百度学术]
FENG Y, SONG Q, LYU W, et al. Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices [J]. Chemosphere, 2017, 189: 643-651. [百度学术]
GU X, LU S, LI L. Oxidation of 1,1,1-Trichloroethane Stimulated by Thermally Activated Persulfate [J]. Industrial & Engineering Chemistry Research, 2011, 50(19): 11029-11036. [百度学术]
GU X, WANG Y, MIAO Z, et al. Degradation of trichloroethylene in aqueous solution by persulfate activated with Fe(Ⅲ)-EDDS complex[J]. Research on Chemical Intermediates, 2017, 43(1): 1-13. [百度学术]
LIN A Y C, WANG X H, LIN C F. Impact of wastewaters and hospital effluents on the occurrence of controlled substances in surface waters [J]. Chemosphere, 2010, 81(5): 562-570. [百度学术]
DEVI L G, MUNIKRISHNAPPA C, NAGARAJ B, et al. Effect of chloride and sulfate ions on the advanced photo Fenton and modified photo Fenton degradation process of alizarin red S [J]. Journal of Molecular Catalysis A, Chemical, 2013, 374/375(11): 125-131. [百度学术]
YANG Q, MA Y, CHEN F, et al. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water [J]. Chemical Engineering Journal, 2019, 378: 122149-122168. [百度学术]
SONG Q, FENG Y, LIU G, et al. Degradation of the flame retardant triphenyl phosphate by ferrous ion-activated hydrogen peroxide and persulfate: Kinetics, pathways, and mechanisms [J]. Chemical Engineering Journal, 2019, 361: 929-936. [百度学术]
CHI F, SONG B, YANG B, et al. Activation of peroxymonosulfate by BiFeO3 microspheres under visible light irradiation for decomposition of organic pollutants [J]. RSC Advances, 2015, 5(83): 67412-67417. [百度学术]
FURMAN O S, TEEL A L, WATTS R J. Mechanism of base activation of persulfate [J]. Environmental Science & Technology, 2010, 44(16): 6423-6428. [百度学术]
QI C, LIU X, MA J, et al. Activation of peroxymono sulfate by base: Implications for the degradation of organic pollutants [J]. Chemosphere, 2016, 151: 280-288. [百度学术]
FLYUNT R, LEITZKE A, MARK G, et al. Determination of •OH, , and Hydroperoxide Yields in Ozone Reactions in Aqueous Solution [J]. The Journal of Physical Chemistry B, 2003, 107(30): 7242-7253. [百度学术]