摘要
生物质基多孔碳材料因原料来源广泛、价格低廉、环境友好等特点受到人们广泛关注,将其应用于超级电容器等储能器件可有效促进其在多领域实现高值化应用。本文通过深入分析近年来生物质基多孔碳超级电容器制备及应用的最新技术,从生物质原料种类、生物质基多孔碳材料的优化(活化和掺杂)及生物质基碳电极在不同超级电容器电极材料的应用等方面,归纳总结了生物质基多孔碳材料作为超级电容器电极未来面临的挑战。
能源对人类历史文明的发展至关重要,长期依赖于化石燃料燃烧的传统能源消费和生产模式已对全球经济和生态环境产生深远的影响。随着化石燃料的日益枯竭和环境污染的日益严重,人们对高性能、环境友好型可再生能源存储设备的需求越来越大。超级电容器作为一种介于蓄电池和传统电容器之间的新型储能装置,具有储能容量大、功率密度高、循环寿命长和绿色环保等优
根据充放电机制的不同,超级电容器可分为双电层电容器、法拉第赝电容器和复合超级电容器3类,其主要包括电极、电解液和隔膜3个组成部
生物质包括所有的动植物、微生物和相关废弃物,其作为一种可再生碳源,因具有普遍性、丰富性、可再生性等特点,备受人们的青睐。生物质富含碳元素,在超级电容器电极材料制备方面的开发潜力巨大,是重要的原料之
生物质具有环境友好、种类繁多、价格低廉、可部分替代或补充化石能源的优点,被认为是制备电极材料的良好前驱

图1 生物质材料在超级电容器中的应用
Fig. 1 Applications of biomaterials in supercapacitors
生物质不仅具有高碳含量,还富含多种其他元素,如氢、氧、氮和硫,因此,利用生物质制备电化学储能领域的活性电极材料已引起人们极大兴
农林生物质包含林业采伐过程产生的树干、树梢、树枝等森林残留物,以及农作物收割过程产生的稻草、麦秸、稻壳和玉米秸秆等农业废弃物,其具有大小不同的天然孔隙和通道,无需经过复杂的处理就可形成多孔结构,是制备超级电容器电极材料的理想原
Zhang等

图2 (a) LPWS74-4 h的制备工艺示意
Fig. 2 (a) Schematic diagram of preparation process of LPWS74-4
许多工业部门在产品加工过程中也会产生大量生物质废弃物,包括制浆造纸工业碱回收过程中黑液产生的副产物木质

图3 (a) GQD/Gr制备示意
Fig. 3 (a) Schematic diagram of preparation of GQD/G
此外,纸张由于含有大量纤维素,且具有机械柔韧性、表面亲水性、3D结构等特性,是作为柔性超级电容器电极的良好基础材料,具有巨大的开发潜力。Li等
生物质材料通过碳化可产生更多中孔结构,便于电解液离子在电极材料内部扩散。通过活化可对多孔碳结构进行进一步优化,在扩大原有孔隙结构的基础上,还能构造新的多孔结构,因此,活化是目前增大碳材料比表面积和调整介孔/微孔比例的最佳方
化学活化法具有反应时间短、步骤简易、产物比表面积大的独特优势,常见的化学活化剂有KOH、ZnCl2和H3PO4等。KOH是最有效的活化剂之一,活化过程会产生K2CO3、CO2等中间产物,这2种活化产物可促进碳结构的进一步活化,从而产生额外的孔隙结构。此外,通过控制活化条件(即碳前驱体/活化剂的比例、温度、时间等)可调节材料的多孔结构。Tian等
对于氮元素含量高的生物质材料来说,随着活化温度的提高和KOH用量的增加,尽管所得碳材料的比表面积有所增大,但由于蚀刻严重,多孔碳的氮元素含量会大大降低。因此,有必要改善活化策略,以制备兼具比表面积大和杂原子掺杂量高特点的碳材
物理活化法是指在高温条件下,通入空气、蒸汽和CO2等气体对碳材料进行处理,除去碳化过程中产生的非组织碳中间物质,然后与结构中其他活性碳原子相互作
双重活化同时具有2种活化法的优点,因此,更加经济高效。孙菲
根据文献报
Pan等
相比于氮原子,磷原子的掺杂可增强碳材料中CO和C—C的位点活性,还可形成新的P—O—C和P—O,从而增大生物质基多孔碳材料的能量密度以及功率密度。Wang等

图4 (a) PPC-N&Ps合成工艺示意
Fig. 4 (a) Schematic diagram for the synthesis process of PPC-N&P
生物质材料自身既含有碳元素,还含有氮、氧、硫、磷等元素,可形成自掺杂生物质多孔碳材料。与外部掺杂技术相比,杂原子的自掺杂不涉及额外的预碳化、活化和掺杂等处理步骤,有效避免了有害化学物质的使用。此外,生物质原料通过碳化直接生成杂原子掺杂碳,有利于提升碳材料的比电容和离子传输速率。因此,与外部掺杂相比,自掺杂工艺是一种更经济、更绿色的生产工
Leng等
石墨烯和碳纳米管具有较大的比表面积和优异的导电性,且与生物质基多孔碳材料上的官能团能够发生协同反应,可极大提高生物质基多孔碳电极的电容特性,常作为储能装置的电极复合材

图5 (a) CGCM@GNS&CNT合成示意
Fig. 5 (a) Schematic diagram of the synthesis for CGCM@GNS&CN
此外,因为石墨烯具有强度高、导电性强等优势,常被应用于生物质基多孔碳/石墨烯复合材料中。Xu等
过渡金属氧化物(MnO2、Co3O4等)作为典型的赝电容材料,通过可逆的法拉第反应和电极/电解质界面上的离子吸附,能够提高碳材料的比电容和能量密度。将过渡金属氧化物与生物质基多孔碳材料结合,可得到生物质基多孔碳/过渡金属氧化物复合电极材料,能够有效增强材料的电化学性能。
MnO2作为一种典型的赝电容电极材料,在催化和储能领域应用潜力巨大。Fu等

图6 (a) Ni催化石墨化机
Fig. 6 (a) Catalytic graphitization mechanism of N
近年来,金属有机框架(MOFs)作为一种具有无机-有机杂化结构的新型多功能晶体受到人们的广泛关注,在纳米结构电极储能领域具有广泛的应用。Zhang等
导电聚合物,包括PANI、聚吡咯(PPy)等,由于具有氧化还原可逆、环境友好、成本低、易合成等优点,被认为是一种良好的赝电容材料。研究发现,导电聚合物的导电性和机械稳定性可通过与碳材料偶联而增强,从而提高材料的循环稳定
生物质衍生碳材料与导电聚合物之间的协同效应有效提高了杂化材料的电化学性能。Hu等

图7 (a)自掺杂氮碳骨架CS/PANI的制作示意
Fig. 7 (a) Diagram of fabricating N-self-doped carbon framework CS/PANI composite
生物质作为一种绿色、可再生资源在电极材料应用领域具有显著的优势。将生物质基多孔碳材料应用于超级电容器等储能器件可有效促进其在多领域实现高值化应用。通过对生物质基多孔碳材料进行活化和掺杂优化等手段,可有效改善其电化学储能性能;将生物质基多孔碳材料与其他材料复合,所得复合电极材料兼具原材料各自的优势,并进一步提高其电化学性能及循环稳定性。在制备超级电容器电极器件时,可优先考虑以生物质基多孔碳材料为原料,并采用有效的制备及改性方法以获得高性能电极。但生物质基多孔碳材料在超级电容器等储能器件领域的工业化应用仍面临一些问题和挑战。
(1)在能量密度方面,超级电容器(能量密度<20 Wh/kg)和电池(能量密度30~200 Wh/kg)之间的储能性能仍有一定差距。相对于其他电极材料,生物质基电极材料的能量密度较低。如何提高生物质基电极材料的能量密度仍是本领域的研究热点和难点。目前已有报道提出,构建混合电池超级电容器是解决超级电容器能量密度低问题的有效途径。
(2)在进行生物质基多孔碳材料结构的优化时,通常会通过掺杂氮原子方法来提高碳材料的孔隙率。无论是使用三聚氰胺、尿素等外部掺杂,还是利用生物质特性进行自掺杂,均可有效改善碳材料的孔隙结构。然而,当同时采取K2CO3或KOH进行活化时,会无法避免地生成一定副产物(如剧毒氰化钾),对人体健康和环境都会产生一定影响。因此,应进一步开发绿色高效的掺杂/活化方法以调控多孔碳的孔径分布和电化学性能。
(3)生物质基多孔碳材料往往表现出相似的形貌和多孔结构,导致在差异化生物质基多孔碳材料的制备和设计方面存在技术瓶颈,难以获得结构类型丰富的高性能多孔碳材料,为生物质基多孔碳材料的多元化应用带来了困难。因此,未来有必要继续探索和开发其他新型材料与生物质基多孔碳材料的复合方法,构筑更多孔隙结构和性能优异的生物质基多孔碳材料。
参考文献
CHEN G Z. Supercapacitor and supercapattery as emerging electrochemical energy stores [J]. International Materials Reviews, 2017, 62(4): 173-202. [百度学术]
MUHAMMAD ZAHIR I, UMER A. Supercapattery: Merging of battery-supercapacitor electrodes for hybrid energy storage devices [J]. Journal of Energy Storage, DOI: 10.1016/j.est.2021.103823. [百度学术]
ŞAHIN M E, BLAABJERG F, SANGWONGWANICH A. A Comprehensive Review on Supercapacitor Applications and Developments [J]. Energies, 2022, 15(3): 1-26. [百度学术]
LIU W, SONG M S, KONG B, et al. Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives [J]. Advanced Materials, DOI: 10.1002/adma.201603436. [百度学术]
LIBICH J, MÁCA J, VONDRáK J, et al. Supercapacitors: Properties and Applications [J]. Journal of Energy Storage, 2018, 17: 224-227. [百度学术]
黄晓斌, 张 熊, 韦统振, 等. 超级电容器的发展及应用现状 [J]. 电工电能新技术, 2017, 36(11): 63-70. [百度学术]
HUANG X B, ZHANG X, WEI T Z, et al. Development and applications status of supercapacitors[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(11): 63-70. [百度学术]
ZHANG H C, ZHANG J Y, GAO X L, et al. Advances in materials and structures of supercapacitors [J]. Ionics, 2022, 28: 515-531. [百度学术]
肖 超, 唐 斌, 吴孟强, 等. 超级电容器电极材料的研究进展 [J]. 绝缘材料, 2007, 40(1): 44-47. [百度学术]
XIAO C, TANG B, WU M Q, et al. Research Progress of Supercapacitor Electrode Materials[J]. Insulating Materials, 2007, 40(1): 44-47. [百度学术]
Zaharaddeen S Iro, Subramani C, Dash S S. A Brief Review on Electrode Materials for Supercapacitor [J]. International Journal of Electrochemical Science, 2016, 11(12): 10628-10643. [百度学术]
LI Z J, GUO D F, LIU Y Y, et al. Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors [J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2020.125418. [百度学术]
SUN Z, QU K Q, YOU Y, et al. Overview of cellulose-based flexible materials for supercapacitors [J]. Journal of Materials Chemistry A, 2021, 9(12): 7278-7300. [百度学术]
YASEEN M, KHATTAK M A K, HUMAYUN M, et al. A Review of Supercapacitors: Materials Design, Modification, and Applications [J]. Energies, DOI: 10.3390/en14227779. [百度学术]
LIN S Y, WANG F J, SHAO Z Q. Biomass applied in supercapacitor energy storage devices [J]. Journal of Materials Science, 2021, 56(3): 1943-1979. [百度学术]
WANG Y F, ZHANG L, HOU H Q, et al. Recent progress in carbon-based materials for supercapacitor electrodes: A review [J]. Journal of Materials Science, 2021, 56(2): 173-200. [百度学术]
CHEN D D, YANG L J, LI J F, et al. Effect of Self-doped Heteroatoms in Biomass-derived Activated Carbon for Supercapacitor Applications [J]. ChemistrySelect, 2019, 4(5): 1586-1595. [百度学术]
李鸿鹏. 生物质碳基分级结构金属氧化物的制备及电化学性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2016. [百度学术]
LI H P. Preparation and electrochemical properties of hierarchical biomass carbon and metal oxide materials[D]. Harbin: Harbin Engineering University,2016. [百度学术]
高 昆, 孙姣姣, 沈梦霞, 等.基于纳米纤维素的电催化与储能材料的研究进展[J].中国造纸, 2021,40(2):72-80. [百度学术]
GAO K, SUN J J, SHEN M X, et al.Research Progress in Electrocatalysis and Energy Storage Materials Based on Nanocellulose[J]. China Pulp & Paper, 2021, 40(2): 72-80. [百度学术]
胡伟航, 沈梦霞, 段 超, 等.基于木材的超级电容器电极材料的研究进展[J].中国造纸, 2021,40(3):83-94. [百度学术]
HU W H, SHEN M X, DUAN C, et al.Research Progress of Wood-based Electrode Materials for Supercapacitors[J]. China Pulp & Paper, 2021, 40(3): 83-94. [百度学术]
高 奇, 项洪中, 倪良萌, 等. 超级电容器用生物质基活性炭电极材料研究进展 [J]. 化工新型材料, 2022, 50(3): 12-17. [百度学术]
GAO Q, XIANG H Z, NI L M, et al. Research progress on biomass-activated carbon electrode material for supercapacitor[J]. New Chemical Materials, 2022, 50(3): 12-17. [百度学术]
CHU Z J, WU Y G, ZHOU A, et al. Analysis of influence factors on municipal solid waste generation based on the multivariable adjustment [J]. Environmental Progress & Sustainable Energy, 2016, 35(6): 1629-1633. [百度学术]
SUN L, GONG Y N, LI D L, et al. Biomass-derived porous carbon materials: Synthesis, designing, and applications for supercapacitors [J]. Green Chemistry, 2022, 24(10): 3864-3894. [百度学术]
OUYANG J, WANG X M, WANG L C, et al. Construction of a porous carbon skeleton in wood tracheids to enhance charge storage for high-performance supercapacitors [J]. Carbon, 2022, 196: 532-539. [百度学术]
REN B, LI C Z, ZHANG L Y, et al. High capacitance for asymmetric supercapacitors based on one-step synthetic nanoflowers/nanocones arrays as cathode and pomelo peel as anode [J]. Journal of Solid State Chemistry, DOI: 10.1016/j.jssc.2021.122428. [百度学术]
ZOU K X, DENG Y F, CHEN J P, et al. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors [J]. Journal of Power Sources, 2018, 378: 579-588. [百度学术]
SONG Y, QU W W, HE Y H, et al. Synthesis and processing optimization of N-doped hierarchical porous carbon derived from corncob for high performance supercapacitors [J]. Journal of Energy Storage, DOI: 10.1016/j.est.2020.101877. [百度学术]
KUSHWAHA R, SINGH R S, MOHAN D. Comparative study for sorption of arsenic on peanut shell biochar and modified peanut shell biochar [J]. Bioresource Technology, DOI: 10.1016/j.biortech.2023.128831. [百度学术]
HAN J Z, PING Y J, YANG S J, et al. High specific power/energy, ultralong life supercapacitors enabled by cross-cutting bamboo-derived porous carbons [J]. Diamond and Related Materials, DOI: 10.1016/j.diamond.2020.108044. [百度学术]
JHA S, MEHTA S, CHEN Y, et al. Design and Synthesis of Lignin-based Flexible Supercapacitors [J]. ACS Sustainable Chemistry & Engineering, 2019, 8: 498-511. [百度学术]
TRAN V C, MASTANTUONI G G, BELAINEH D, et al. Utilizing native lignin as redox-active material in conductive wood for electronic and energy storage applications [J]. Journal of Materials Chemistry A, 2022, 10(29): 15677-15688. [百度学术]
ZHANG B, JIANG Y Q, BALASUBRAMANIAN R. Synthesis, formation mechanisms and applications of biomass-derived carbonaceous materials: A critical review [J]. Journal of Materials Chemistry A, 2021, 9(44): 24759-24802. [百度学术]
LIU L Q, AN X Y, TIAN Z J, et al. Biomass derived carbonaceous materials with tailored superstructures designed for advanced supercapacitor electrodes [J]. Industrial Crops and Products, DOI: 10.1016/j.indcrop.2022.115457. [百度学术]
ZHANG Z C, YU C Y, PENG Z Y, et al. Mechanically stiff and high-areal-performance integrated all-in-wood supercapacitors with electroactive biomass-based hydrogel [J]. Cellulose, 2020, 28: 389-404. [百度学术]
LU S Y, JIN M, ZHANG Y, et al. Chemically Exfoliating Biomass into a Graphene-like Porous Active Carbon with Rational Pore Structure, Good Conductivity, and Large Surface Area for High-performance Supercapacitors [J]. Advanced Energy Materials, DOI: 10.1002/aenm.201702545. [百度学术]
TAN Z X, YANG J W, LIANG Y R, et al. The changing structure by component: Biomass-based porous carbon for high-performance supercapacitors [J]. Journal of Colloid and Interface Science, 2021, 585: 778-786. [百度学术]
PHIRI J, DOU J Z, VUORINEN T, et al. Highly Porous Willow Wood-derived Activated Carbon for High-performance Supercapacitor Electrodes [J]. ACS Omega, 2019, 4(19): 18108-18117. [百度学术]
姜 波, 金永灿. 基于木质素分子结构特性的功能材料研究进展[J]. 复合材料学报, 2022, 39(7): 3059-3083. [百度学术]
JIANG B, JIN Y C. Research progress of lignin functional materials based on its structural properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3059-3083. [百度学术]
ZHENG G F, HUANG Z C, LIU Z. Cooperative utilization of beet pulp and industrial waste fly ash to produce N/P/O self-co-doped hierarchically porous carbons for high-performance supercapacitors [J]. Journal of Power Sources, DOI: 10.1016/j.jpowsour.2020.228935. [百度学术]
DING Z Y, MEI X W, WANG X L. All-lignin converted graphene quantum dot/graphene nanosheet hetero-junction for high-rate and boosted specific capacitance supercapacitors [J]. Nanoscale Advances, 2021, 3(9): 2529-2537. [百度学术]
LI K, LIU X L, CHEN S, et al. A flexible solid-state supercapacitor based on graphene/polyaniline paper electrodes [J]. Journal of Energy Chemistry, 2019, 32: 166-173. [百度学术]
WANG J, NIE P, DING B, et al. Biomass derived carbon for energy storage devices [J]. Journal of Materials Chemistry A, 2016, 5(6): 2411-2428. [百度学术]
TIAN J S, ZHANG T, TALIFU D, et al. Porous carbon materials derived from waste cotton stalk with ultra-high surface area for high performance supercapacitors [J]. Materials Research Bulletin, DOI: 10.1016/j.materresbull.2021.111457. [百度学术]
JIANG Y L, CHEN J, ZENG Q X, et al. Facile method to produce sub-1 nm pore-rich carbon from biomass wastes for high performance supercapacitors [J]. Journal of Colloid and Interface Science, 2022, 612: 213-222. [百度学术]
SEVILLA M, DÍEZ N, FUERTES A B. More Sustainable Chemical Activation Strategies for the Production of Porous Carbons [J]. ChemSusChem, 2021, 14(1): 94-117. [百度学术]
SUN L, TIAN C G, LI M T, et al. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1(21): 6462-6470. [百度学术]
GAO Y, YUE Q Y, GAO B Y, et al. Insight into activated carbon from different kinds of chemical activating agents: A review [J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2020.141094. [百度学术]
GIRGIS B S, YUNIS S S, SOLIMAN A M. Characteristics of activated carbon from peanut hulls in relation to conditions of preparation [J]. Materials Letters, 2002, 57(1): 164-172. [百度学术]
LU H, ZHAO X S. Biomass-derived carbon electrode materials for supercapacitors [J]. Sustainable Energy & Fuels, 2017, 1(6): 1265-1281. [百度学术]
JIANG C L, YAKABOYLU G A, YUMAK T, et al. Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes [J]. Renewable Energy, 2020, 155: 38-52. [百度学术]
孙菲菲. 多孔碳材料的双重活化法制备及其高性能超级电容器应用 [D]. 哈尔滨: 哈尔滨工业大学, 2019. [百度学术]
SUN F F. Synthesis of porous carbon by a dual activation method for high-performance supercapacitor application[D]. Harbin: Harbin Institute of Technology, 2019. [百度学术]
YANG L, WANG J S, WANG S H, et al. Biomass-derived multi-heteroatom-doped carbon materials for high-performance solid-state symmetric supercapacitors with superior long-term cycling stability [J]. Ionics, 2020, 26(8): 4141-4151. [百度学术]
SEKHON S S, PARK J S. Biomass-derived N-doped porous carbon nanosheets for energy technologies [J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2021.129017. [百度学术]
DENISA H J, SEREDYCH M, LU G Q, et al. Effect of surface phosphorus functionalities of activated carbons containing oxygen and nitrogen on electrochemical capacitance [J]. Carbon, 2009, 47(6): 1576-1584. [百度学术]
MATSAGAR B M, YANG R X, DUTTA S, et al. Recent progress in the development of biomass-derived nitrogen-doped porous carbon [J]. Journal of Materials Chemistry A, 2021, 9(7): 3703-3728. [百度学术]
DENIS P A. Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur [J]. Chemical Physics Letters, 2010, 492(4/6): 251-257. [百度学术]
PAN F P, CAO Z Y, ZHAO Q P, et al. Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction [J]. Journal of Power Sources, 2014, 272: 8-15. [百度学术]
LI Q, LU T Y, WANG L L, et al. Biomass based N-doped porous carbons as efficient CO2 adsorbents and high-performance supercapacitor electrodes [J]. Separation and Purification Technology, DOI: 10.1016/j.seppur.2021.119204. [百度学术]
WANG Z, TAN Y T, YANG Y L, et al. Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors [J]. Journal of Power Sources, 2018, 378: 499-510. [百度学术]
TIAN W Q, GAO Q M, VAHIDMOHAMMADI A, et al. Liquid-phase Exfoliation of Layered Biochars into Multifunctional Heteroatom (Fe, N, S) Co-doped Graphene-like Carbon Nanosheets [J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2020.127601. [百度学术]
HOU J H, CAO C B, IDREES F, et al. Hierarchical Porous Nitrogen-doped Carbon Nanosheets Derived from Silk for Ultrahigh-capacity Battery Anodes and Supercapacitors [J]. ACS Nano, 2015, 9(3): 2556-2564. [百度学术]
XU G, HAN J P, DING B, et al. Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage [J]. Green Chemistry, 2014, 17(3): 1668-1674. [百度学术]
WEI T Y, WEI X L, GAO Y, et al. Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors [J]. Electrochimica Acta, 2015, 169: 186-194. [百度学术]
ZHAO Y Q, LU M, TAO P Y, et al. Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors [J]. Journal of Power Sources, 2016, 307: 391-400. [百度学术]
GOPALAKRISHNAN A, BADHULIKA S. Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications [J]. Journal of Power Sources, DOI: 10.1016/j.jpowsour.2020.228830. [百度学术]
LENG C Y, SUN K, LI J H, et al. From Dead Pine Needles to O, N Codoped Activated Carbons by a One-step Carbonization for High Rate Performance Supercapacitors [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10474-10482. [百度学术]
LU S S, YANG W S, ZHOU M, et al. Nitrogen- and oxygen-doped carbon with abundant micropores derived from biomass waste for all-solid-state flexible supercapacitors [J]. Journal of Colloid and Interface Science, 2021, 610: 1088-1099. [百度学术]
武昕彤. 杂原子掺杂生物质多孔碳的制备及在超级电容器中的应用 [D]. 太原: 中北大学, 2020. [百度学术]
WU X T. Preparation of heteroatom doped porous carbon from biomass for supercapacitors[D]. Taiyuan: North University of China, 2020. [百度学术]
LI L H, WANG L, YE T T, et al. Stretchable Energy Storage Devices Based on Carbon Materials [J]. Small, DOI: 10.1002/smll.202005015. [百度学术]
HE W W, REN P G, DAI Z, et al. Hierarchical porous carbon composite constructed with 1-D CNT and 2-D GNS anchored on 3-D carbon skeleton from spent coffee grounds for supercapacitor [J]. Applied Surface Science, DOI: 10.1016/j.apsusc.2021.149899. [百度学术]
XU M M, WANG A Q, XIANG Y, et al. Biomass-based porous carbon/graphene self-assembled composite aerogels for high-rate performance supercapacitor [J]. Journal of Cleaner Production, DOI: 10.1016/j.jclepro.2021.128110. [百度学术]
TRAN C D, HO H C, KEUM J K, et al. Sustainable Energy-storage Materials from Lignin-graphene Nanocomposite-derived Porous Carbon Film [J]. Energy Technology, 2017, 5(11): 1927-1935. [百度学术]
梁志奇, 侯从聪, 常春蕊, 等. 掺钯/镍对超级电容器碳纳米管电极材料电化学性能的影响 [J]. 复合材料学报, 2022, 39(8): 3906-3914. [百度学术]
LIANG Z Q, HOU C C, CHANG C R, et al. Effects of palladium/nickel doping on the electrochemical properties of carbon nanotubes electrode materials for supercapacitors[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3906-3914. [百度学术]
FU M, ZHU Z T, ZHANG Z H, et al. Microwave assisted growth of MnO2 on biomass carbon for advanced supercapacitor electrode materials [J]. Journal of Materials Science, 2021, 56(11): 6987-6996. [百度学术]
JI X Q, SUN D L, ZOU W H, et al. Ni/MnO2 doping pulping lignin-based porous carbon as supercapacitors electrode materials [J]. Journal of Alloys and Compounds, DOI: 10.1016/j.jallcom.2021.160112. [百度学术]
SHI Z J, XING L, LIU Y, et al. A Porous Biomass-based Sandwich-structured Co3O4@Carbon Fiber@Co3O4 Composite for High-performance Supercapacitors [J]. Carbon, 2018, 129: 819-825. [百度学术]
ZHANG J Y, GUO H, YANG F, et al. Walnut shell-derived porous carbon integrated with Ni-MOF/SPANI composites for high-performance supercapacitor [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, DOI: 10.1016/j.colsurfa.2021.127584. [百度学术]
LYU L L, SEONG K D, KO D J, et al. Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors [J]. Materials Chemistry Frontiers, 2019, 3(12): 2543-2570. [百度学术]
HU Y J, TONG X, ZHUO H, et al. Biomass-based Porous N-self-doped Carbon Framework/Polyaniline Composite with Outstanding Supercapacitance [J]. ACS Sustainable Chemistry & Engineering, 2017, 5: 8663-8674. [百度学术]
DU W, WANG X N, SUN X Q, et al. Nitrogen-doped hierarchical porous carbon using biomass-derived activated carbon/carbonized polyaniline composites for supercapacitor electrodes [J]. Journal of Electroanalytical Chemistry, 2018, 827: 213-220. [百度学术]
ZHUO H, HU Y J, CHEN Z H, et al. Cellulose Carbon Aerogel/PPy Composites for High-performance Supercapacitor [J]. Carbohydrate Polymers, 2019, 215: 322-329. CPP [百度学术]