摘要
本研究以轻木为原料,经碱处理、漂白、乙酰化、热压和浸渍电解液制备出一种新型木材基凝胶聚合物电解质(GPE)。结果表明,热压改性木片的结晶度为54.7%,机械强度为2.16 MPa,热稳定性高达300 ℃。经电解液润胀后,热压改性木片的孔隙率和吸液率分别为74.6%和719.0%,与热压前性能一致。同时,木材基GPE展现出优异的离子电导率(3.68 mS/cm)和电化学稳定窗口(5.0 V)。组装的Li/GPE/LiFePO4锂离子电池在0.5 C下循环100圈后的容量由150.9 mAh/g仅衰减至146.1 mAh/g。但由于木材基GPE的孔径大,组装的锂离子电池的库伦效率仅为91%。
随着“双碳”目标的确定,我国对新型绿色能源存储设备的需求不断增长。锂离子电池由于能量密度大、使用寿命长、充放电效率高等特点成为了最具发展前景的储能设
常用GPE的基体材料主要包括聚环氧乙烷(PEO)、聚甲基丙烯酸甲酯(PMMA)、聚丙烯腈(PAN)和聚偏氟乙烯(PVDF)等有机聚合
Zhang等
据此,本研究以轻木为原料,利用其天然的定向孔隙结构,经碱处理、漂白、乙酰化、热压及电解液活化制备出一种新型凝胶聚合物电解质(GPE)。通过对木材基GPE的化学结构、表面形貌、机械强度、热稳定性、吸液性能及电化学性能进行表征,探究了化学预处理及热压对木材基GPE结构与性能的影响。
轻木(35 mm(长)×50 mm(宽)×970 mm(高)),北京海贝思科技有限公司;无水乙醇、氢氧化钠,分析纯,天津市大茂化学试剂厂;无水亚硫酸钠,分析纯,天津市北辰方正试剂厂;过氧化氢(H2O2,分析纯)、N,N-二甲基甲酰胺(DMF,色谱纯)、吡啶(分析纯),天津市致远化学试剂厂;乙酰氯,分析纯,上海麦克林生化科技股份有限公司;扣式电池壳(CR2032)、金属弹片、垫片、LiFePO4粉、炭黑和锂金属负极片(直径15.6 mm,厚度0.45 mm),广东科路得新能源科技有限公司;LiPF6电解液(1 mol/L,溶剂:碳酸乙烯酯∶碳酸二甲酯∶碳酸二乙酯=1∶1∶1,体积比),兴化市贝诺特电池材料有限公司。
将轻木切成薄片(以下简称木片,厚度0.5 mm)加入到NaOH(2.5 mol/L)和Na2SO3(0.4 mol/L)的混合溶液中,在40 ℃真空箱内进行碱处理3 h,反应结束后使用去离子水充分清洗。将碱处理后的木片置于沸腾的H2O2溶液(质量分数30%)中漂白处理,直至木片变白。取出后充分清洗,将干燥后的漂白木片(绝干1 g)浸入DMF(50 mL)中,随后加入吡啶(10.17 mL)和乙酰氯(2.98 mL),在100 ℃下反应1 h。反应完成后,分别使用DMF和乙醇充分清洗样品,得到改性轻木木片(以下简称改性木片)。将得到的改性木片使用平板硫化机(100 ℃,5 MPa)热压6 h得到热压改性轻木木片(以下称热压改性木片)。将热压改性木片在80 ℃的真空干燥箱中干燥16 h后立即转移到充满氩气的手套箱中。将热压改性木片浸渍LiPF6电解液,充分吸收电解液后得到木材基GPE。采用木片和改性木片制备GPE作为参比样。
采用扫描电子显微镜(SEM,F16502,荷兰PHENOM)观察样品的表面形貌,加速电压为10 kV。测试前将样品在105 ℃烘箱中干燥,再用离子溅射仪(BZ19-SBC-12,北京中科科仪股份有限公司)对其进行喷金处理。
采用正丁醇吸收
(1) |
式中,m1为吸收正丁醇后样品的质量,mg;m0为吸收正丁醇前样品的质量,mg;ρ为正丁醇的密度,0.8098 g/c
采用同步热分析仪(STA 449 F5 Jupiter,德国NETZSCH)对样品进行热稳定性测试。测试前将样品在105 ℃下干燥以除去表面水分。测试条件为氮气环境,温度范围为50~800 ℃。
在手套箱中(水含量<0.08 mg/
(2) |
式中,m1表示样品吸液前的质量,g;m2表示样品吸液后的质量,g。
利用电化学工作站(PGSTAT302N,瑞士万通公司)对样品的离子电导率进行测试,频率波动范围为0.01~1
(3) |
式中,L表示样品吸液后的厚度,cm;R表示样品内阻,Ω;S表示样品的有效接触面积,0.025 c
用采样器将样品切成圆形(直径1.8 cm)后,组装Li/GPE/Li电池,采用安培计时电流法测试其电流时间曲线,以及对电池极化前后的开路电位交流阻抗进行测试。样品的锂离子(L
(4) |
式中,I0表示初始电流,μA;Is表示稳态电流,μA;R0表示极化前界面阻抗,Ω;Rs表示极化后界面阻抗,Ω;V表示外加电压,10 mV。

图1 木片、 改性木片及热压改性木片的FT-IR谱图
Fig. 1 FT-IR spectra of wood chip, modified wood chip, and hot-pressed modified wood chip

图2 木片、 改性木片及热压改性木片的XRD谱图
Fig. 2 XRD patterns of wood chip, modified wood chip, and hot-pressed modified wood chip
为进一步了解化学预处理和热压过程对木片表面形貌的影响,采用SEM对其进行扫描,结果见

图3 木片、 改性木片及热压改性木片的SEM图和对应的实物图
Fig. 3 SEM images and pictures of wood chip, modified wood chip, and hot-pressed modified wood chip
GPE前驱膜的高孔隙率将有利于其对电解液的吸收,进而提升GPE的电化学性能。

图4 木片、 改性木片及热压改性木片的孔隙率
Fig. 4 Porosity of wood chip, modified wood chip, and hot-pressed modified wood chip
锂离子电池在组装过程中受到挤压应力的作用,为了保证GPE在电池中的完整性,要求其具有良好的机械性能。

图5 木片、 改性木片及热压改性木片的应力⁃应变曲线
Fig. 5 Stress-strain curves of wood chip, modified wood chip, and hot-pressed modified wood chip
GPE的热稳定性是决定锂离子电池安全性能的重要指标之一。木片、改性木片和热压改性木片的热失重曲线如

图6 木片、 改性木片及热压改性木片的热失重曲线
Fig. 6 TG curves of wood chip, modified wood chip, and hot-pressed modified wood chip
GPE前驱膜的吸液率直接决定了其离子传导率。

图7 木片、 改性木片及热压改性木片的吸液率
Fig. 7 Electrolyte uptake of wood chip, modified wood chip, and hot-pressed modified wood chip
GPE的离子电导率直接影响其组装电池的充放电效率和循环性能。

图8 木片、 改性木片及热压改性木片的奈奎斯特曲线
Fig. 8 Nyquist curves of wood chip, modified wood chip, and hot-pressed modified wood chip
样品 | 交流阻抗/Ω | 离子电导率/mS·c |
---|---|---|
木片 | 43.79 | 1.20 |
改性木片 | 17.83 | 2.35 |
热压改性木片 | 10.46 | 3.68 |
锂离子迁移数是评价锂离子在电解质中迁移能力的重要指标,在充放电过程中,阴阳离子运动方向相反,保持高的锂离子迁移数可以减少电解质中的离子浓度差,提高锂离子传输速
样品 | I0 / μA | IS / μA | R0 / Ω | RS / Ω | |
---|---|---|---|---|---|
木片 改性木片 热压改性木片 |
2.22 1.75 3.60 |
1.77 1.54 2.53 |
3659 5498 162.34 |
3725 6226 2621 |
0.44 0.74 0.55 |
良好的界面相容性将有利于电池循环性能的提

图9 木片、 改性木片及热压改性木片组装电池的EIS图
Fig. 9 EIS plots of cells assembled by wood chip, modified wood chip, and hot-pressed modified wood chip
电化学稳定窗口是指电化学反应能够发生的电位范围,是评估GPE在锂离子电池工作过程中电化学结构稳定性的重要参数。

图10 木片、 改性木片及热压改性木片组装电池的LSV曲线
Fig. 10 LSV curves of cells assembled by wood chip, modified wood chip, and hot-pressed modified wood chip
为了探索GPE在锂离子电池中的循环性能,选用综合性能最优的热压改性木片组装电池(Li/GPE/LiFePO4),并对其在0.5 C倍率下进行充放电循环测试,所得放电比容量与库伦效率曲线及充放电曲线如

图11 热压改性木片组装电池在0.5 C下的电池循环性能
Fig. 11 Cycling performance of cells assembled by hot-pressed modified wood chip at 0.5 C
本研究以轻木为原料,经碱处理、漂白、乙酰化、热压和浸渍电解液制备出木材基凝胶聚合物电解质(GPE)。通过对其结构及性能进行表征,探究化学改性及热压处理对木材基GPE性能的影响。
3.1 碱处理、漂白、乙酰化改性和热压处理可以显著提高轻木片的孔隙率(74.6%)、吸液率(719.0%)和热稳定性(300 ℃)。然而由于木质素与半纤维素的脱出及乙酰化改性导致改性轻木片结晶度下降,使得改性轻木片的机械强度降低(0.49 MPa)。
3.2 热压处理后,轻木片结晶度提高,机械强度高达2.16 MPa。同时,由于热压过程使木片表面光滑,体电阻下降,其离子电导率和界面电阻均有所改善,分别达到3.68 mS /cm和2365 Ω。此外,归因于热压改性轻木片优异的吸液率,其电化学稳定窗口扩宽至5.0 V。将热压改性轻木片组装成Li/GPE/LiFePO4电池,在室温、0.5 C的条件下循环100圈后其容量由150.9 mAh/g衰减至146.1 mAh/g。但由于GPE的孔径过大,其库伦效率仅为91%。
参 考 文 献
张天芸, 石小红, 张 乐, 等. 基于离子液体协同法的双交联结构细菌纤维素/聚丙烯酰胺凝胶聚合物电解质构建[J]. 纺织学报, 2022,43(11): 22-28. [百度学术]
ZHANG T Y, SHI X H, ZHANG L, et al. Bacterial Cellulose/Polyacrylamide Hydrogel Polymer Electrolyte with Dualcrosslinked Network Based on Ionic Liquid Synergistic Method[J]. Journal of Textiel Research, 2022,43(11): 22-28. [百度学术]
臧玉莉, 石 琨, 邹 雷, 等. 3D交联复合结构凝胶聚合物电解质制备研究[J]. 电源技术, 2022,46(1): 30-33. [百度学术]
ZANG Y L, SHI K, ZOU L, et al. Preparation of 3D Cross-linked Gel Composite Polymer Electrolytes[J]. Chinese Journal of Power Sources, 2022,46(1): 30-33. [百度学术]
伍锦群, 李政蒿, 李 薇. ZIF-67掺杂纸基锂离子电池隔膜的制备及其性能研究[J]. 中国造纸, 2022,41(11): 102-112. [百度学术]
WU J Q, LI Z H, LI W. Preparation and Properties of ZIF-67 Doped Paper-based Separator for Lithium-ion Batteries[J]. China Pulp & Paper, 2022,41(11): 102-112. [百度学术]
张晓晨, 刘 文, 陈雪峰, 等. 锂离子电池隔膜研究进展[J]. 中国造纸, 2022,41(2): 104-114. [百度学术]
ZHANG X C, LIU W, CHEN X F, et al. Research Progress of Lithium-ion Battery Separators[J]. China Pulp & Paper, 2022,41(2): 104-114. [百度学术]
狄隆康, 谢正伟, 王庆印, 等. 具有热稳定性的锂离子电池隔膜材料研究进展[J]. 高分子材料科学与工程, 2022,38(12): 137-145. [百度学术]
DI L K, XIE Z W, WANG Q Y, et al. Progress on Thermal-stable Lithium-ion Battery Separators[J]. Polymer Materials Science and Engineering, 2022,38(12): 137-145. [百度学术]
于 捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, DOI: 10.16085/j.issn.1000-6613.2022-1183. [百度学术]
YU J, ZHANG W L. Development Status and Progress of Lithium Ion Battery Separator[J]. Chemical Industry and Engineering Progress, DOI: 10.16085/j.issn.1000-6613.2022-1183. [百度学术]
褚 衡, 张焱林, 陈晓琴, 等. 锂离子电池用凝胶聚合电解质基体改性的研究进展[J]. 河南化工, 2012,29(7): 17-20. [百度学术]
ZHU H, ZHANG Y L, CHEN X Q, et al. Research Progress of Modification of Gel Polymer Electrolyte for Lithium-ion Batteries[J]. Henan Chemical Industry, 2012,29(7): 17-20. [百度学术]
范欢欢, 周 栋, 范丽珍, 等. 现场聚合制备锂离子电池用凝胶聚合物电解质研究进展[J]. 硅酸盐学报, 2013,41(2): 134-139. [百度学术]
FAN H H, ZHOU D, FAN L Z, et al. Development on In-Situ Synthesis of Gel Polymer Electrolyte for Lithium Batteries[J]. Journal of the Chinese Ceramic Society, 2013,41(2): 134-139. [百度学术]
汤 浩, 周浩楠, 黄权波, 等. 生物质与纸基柔性电子材料的研究进展[J]. 中国造纸, 2022,41(11): 75-86. [百度学术]
TANG H, ZHOU H N, HUANG Q B, et al. Research Progress of Biomass & Paper-based Flexible Electronics[J].China Pulp & Paper, 2022,41(11): 75-86. [百度学术]
CHENG X L, PAN J, ZHAO Y, et al. Gel Polymer Electrolytes for Electrochemical Energy Storage[J]. Advanced Energy Materials, DOI: 10.1002/aenm.201702184. [百度学术]
陈晓琴. 光固化锂离子电池凝胶电解质的研究[D]. 武汉: 湖北工业大学, 2011. [百度学术]
CHEN X Q. Study on UV-Curable Gel Polymer Electrolyte for Lithium Ion Batteries[D]. Wuhan: Hubei University of Technology, 2011. [百度学术]
XU Z L, GUO D C, LIU Z Q, et al. Cellulose Acetate-based High-electrolyte-uptake Gel Polymer Electrolyte for Semi-solid-state Lithium-oxygen Batteries with Long-cycling Stability[J]. Chemistry an Asian Journal, DOI: 10.1002/asia.202200712. [百度学术]
SELVANATHAN V, HALIM M N A, AZZAHARI A D, et al. Effect of Polar Aprotic Solvents on Hydroxyethyl Cellulose-based Gel Polymer Electrolyte[J]. Ionics, 2018,24(7): 1955-1964. [百度学术]
FU Y D, YANG L, ZHANG M, et al. Recent Advances in Cellulose-based Polymer Electrolytes[J]. Cellulose, 2022,29(17): 8997-9034. [百度学术]
ZHANG H B, WANG S J, WANG A, et al. Polyethylene Glycol-Grafted Cellulose-based Gel Polymer Electrolyte for Long-life Li-ion Batteries[J]. Applied Surface Science, DOI: 10.1016/j.apsusc.2022.153411. [百度学术]
SONG A, HUANG Y, ZHONG X P, et al. Gel Polymer Electrolyte with High Performances Based on Pure Natural Polymer Matrix of Potato Starch Composite Lignocellulose[J]. Electrochimica Acta, 2017,245: 981-992. [百度学术]
WANG Z H, LEE Y H, KIM S W, et al. Why Cellulose-based Electrochemical Energy Storage Devices?[J]. Advanced Materials, DOI: 10.1002/adma.202000892. [百度学术]
ZHAO D W, ZHU Y, CHENG W K, et al. Cellulose-based Flexible Functional Materials for Emerging Intelligent Electronics[J]. Advanced Materials, DOI: 10.1002/adma.202000619. [百度学术]
李玉洁, 李冠辉, 侯高远, 等. 木质纤维聚合度对高透光率纤维素薄膜力学性能的影响[J]. 中国造纸学报, 2023,38(1): 1-8. [百度学术]
LI Y J, LI G H, HOU G Y, et al. Influence of Degree of Polymerization of Wood Fiber on Mechanical Properties of Cellulose Films with High Transmittance[J]. Transactions of China Pulp and Paper, 2023,38(1): 1-8. [百度学术]
CHEN J H, LIU J G, ZHANG W T, et al. Conductive Polyaniline/Cellulose/Graphite Composite Films with High Thermal Stability and Antibacterial Activity[J]. Paper and Biomaterials, 2017,2(1):40-51. [百度学术]
ZHANG W J, LI S L, ZHANG Y R, et al. A Quasi-solid-state Electrolyte with High Ionic Conductivity for Stable Lithium-ion Batteries[J]. Science China Technological Sciences, 2022,65(10): 2369-2379. [百度学术]
LI D F, GÖCKLER T, SCHEPERS U, et al. Polyelectrolyte Complex-covalent Interpenetrating Polymer Network Hydrogels[J]. Macromolecules, 2022,55(11): 4481-4491. [百度学术]
ZHONG Y Y, ZHONG L, WANG S J, et al. Ultrahigh Li-ion Conductive Single-ion Polymer Electrolyte Containing Fluorinated Polysulfonamide for Quasi-solid-state Li-ion Batteries[J]. Journal of Materials Chemistry A, 2019,7(42): 24251-24261. [百度学术]
WANG W, LI Z H, HUANG H B, et al. Facile Design of Novel Nanocellulose-based Gel Polymer Electrolyte for Lithium-ion Batteries Application[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2022.136568. [百度学术]
ZHAO G F, MEI Z Y, DUAN L Y, et al. COF-based Single L
龙克莹, 王 东, 林兰英, 等. 木材多尺度界面结构及其力学性能的研究进展[J]. 中国造纸学报, 2021,36(1): 88-94. [百度学术]
LONG K Y, WANG D, LIN L Y, et al. Research Progress in Multi-scale Interface Structure and Mechanical Properties of Wood[J]. Transactions of China Pulp and Paper, 2021,36(1): 88-94. [百度学术]
杜新伟. 高性能聚丙烯复合隔膜的制备与性能研究[D]. 长春: 长春工业大学, 2022. [百度学术]
DU X W. Preparation and Properties of High Performance Polypropylene Composite Separator[D]. Changchun: Changchun University of Technology, 2022. [百度学术]
ZHANG G L, ZHANG L, DENG H, et al. Preparation and Characterization of Sodium Carboxymethyl Cellulose from Cotton Stalk Using Microwave Heating[J]. Journal of Chemical Technology & Biotechnology, 2011,86(4): 584-589. [百度学术]
黄尔卓. NaOH溶液处理法制备木纤维工艺及无胶胶合机理研究[D]. 杭州: 浙江农林大学, 2021. [百度学术]
HUANG E Z. Study on the Preparation of Wood Fiber by NaOH Solution Treatment and Its Binder-free Bonding Mechanism[D]. Hangzhou: Zhejiang A & F University, 2021. [百度学术]
谢 杰. 白橡锯材热压干燥特性与改性机制研究[D]. 长沙: 中南林业科技大学, 2018. [百度学术]
XIE J. Study on Characteristics and Dimensional Stabilization Mechanism of Press Dried Quercus Spp. Wood[D]. Changsha: Central South University of Forestry and Technology, 2018. [百度学术]
NIE S X, ZHANG K, LIN X J, et al. Enzymatic Pretreatment for the Improvement of Dispersion and Film Properties of Cellulose Nanofibrils[J]. Carbohydrate Polymers, 2018,181: 1136-1142. [百度学术]
YU S H, LIU Z G, XU N, et al. Influencing Factors for Determining the Crystallinity of Native Cellulose by X-ray Diffraction[J]. Analytical Sciences, 2020,36(8): 947-951. [百度学术]
蔺 焘, 郭文静, 方 露, 等. 3种方法计算棉秆纤维素结晶度的比较分析[J]. 东北林业大学学报, 2013,41(2): 89-92. [百度学术]
LIN T, GUO W J, FANG L, et al. Crystallinity of Stalk Cotton Cellulose by Three Methods[J]. Journal of Northeast Forestry University, 2013,41(2): 89-92. [百度学术]
WANDAUD W R, DJUNED F M. Cellulose Acetate from Oil Palm Empty Fruit Bunch via A One Step Heterogeneous Acetylation[J]. Carbohydrate Polymers, 2015,132: 252-260. [百度学术]
VACA-MEDINA G, JALLABERT B, VIET D, et al. Effect of Temperature on High Pressure Cellulose Compression[J]. Cellulose, 2013,20(5): 2311-2319. [百度学术]
陈思禹, 薛振华, 刘金炜, 等. 碱处理对木材松弛性能的影响[J]. 西北林学院学报, 2018,33(2): 193-197. [百度学术]
CHEN S Y, XUE Z H, LIU J W, et al. Effect of Alkali Treatment on Relaxation Properties of Wood[J]. Journal of Northwest Forestry University, 2018,33(2): 193-197. [百度学术]
黄赛赛. 毛 竹、杨木乙酰化及与甲基丙烯酸甲酯联合改性的研究[D]. 杭州: 浙江农林大学, 2019. [百度学术]
HUANG S S. Study on the Acetylation and Combined Modification with Methyl Methacrylate of Bamboo or Poplar[D]. Hangzhou: Zhejiang A & F University, 2019. [百度学术]
许向东. 预处理对杨木纤维/HDPE复合材料性能影响的研究[D]. 北京: 北京林业大学, 2013. [百度学术]
XU X D. Effects of Pretreatment on Properties of Poplar Fiber/HDPE Composites[D]. Beijing: Beijing Forestry University, 2013. [百度学术]
彭万喜, 林 芝, 李年存. 碱处理对桉木纤维挤压结合机理的影响[J]. 中国工程科学, 2014,16(4): 64-68. [百度学术]
PENG W X, LIN Z, LI N C. Effects of Alkali Treatment on Mechanism of Extrusion Bonding of Eucalyptus Wood Fiber[J]. Strategic Study of CAE, 2014,16(4): 64-68. [百度学术]
ROL F, ROUILLY A, BRAS J. Thermo-compression of Cellulose Nanofibrils[J]. Cellulose, 2020,27(1): 25-40. [百度学术]
彭霄鹏, 聂双喜, 刘 璟, 等. 基于微波液化的木质纤维素组分分离和转化——纤维素组分的理化和酶解性质[J]. 林业科学, 2019,55(5): 134-141. [百度学术]
PENG X P, NIE S X, LIU J, et al. Physicochemical Characterization and Enzymatic Hydrolysis of Cellulosic Component Fractionated from Microwave Liquefied Lignocellulosic Biomass[J]. Scientia Silvae Sinicae, 2019,55(5): 134-141. [百度学术]
LU Y X, TAO P, ZHANG N, et al. Preparation and Thermal Stability Evaluation of Cellulose Nanofibrils from Bagasse Pulp with Differing Hemicelluloses Contents[J]. Carbohydrate Polymers, DOI: 10.1016/j.carbpol.2020.116463. [百度学术]
LI T, LI S X, KONG W Q, et al. A Nanofluidic Ion Regulation Membrane with Aligned Cellulose Nanofibers[J]. Science Advances, DOI: 10.1126/sciadv.aau4238. [百度学术]
王蓉蓉, 朱振东, 彭 文. 恒电位极化法测量LiPF6基电解液离子迁移数[J]. 电池工业, 2020,24(6): 283-287. [百度学术]
WANG R R, ZHU Z D, PENG W. Measurement of Transference Number in LiPF6-based Electrolytes by Potentiostatic Polarization Method[J]. Chinese Battery Industry, 2020,24(6): 283-287. [百度学术]
WANG S, KUO P, HSIEH C, et al. Design of Poly(acrylonitrile)-based Gel Electrolytes for High-performance Lithium Ion Batteries[J]. ACS Applied Materials & Interfaces, 2014,6(21): 19360-19370. [百度学术]
TIAN Y S, SHI T, RICHARDS W D, et al. Compatibility Issues Between Electrodes and Electrolytes in Solid-state Batteries[J]. Energy & Environmental Science, 2017,10(5): 1150-1166. [百度学术]
LI Z H, WANG W, LIANG X M, et al. Fiber Swelling to Improve Cycle Performance of Paper-based Separator for Lithium-ion Batteries Application[J]. Journal of Energy Chemistry, 2023,79: 92-100. [百度学术]
ZHANG L, Gao H Q, JIN G, et al. Cellulose-based Electrolytes for Advanced Lithium-ion Batteries: Recent Advances and Future Perspectives[J]. ChemNanoMat, DOI: 10.1002/cnma.202200142. CPP [百度学术]