摘要
本研究采用紫外光引发原位聚合法将丙烯酸-氯化胆碱合成的可聚合低共熔溶剂(polymerizable deep eutectic solvents,PDES)与纤维素纳米纤丝(cellulose nanofibril,CNF)气凝胶结合,并引入植酸以增强CNF与PDES之间的结合作用,制得含有丰富的共价键和非共价键(氢键)的离子导电弹性体,通过多种现代仪器分析测试其性能。结果表明,该离子导电弹性体在机械性能(应力和应变分别可达0.38 MPa和1378%)、热稳定性、抗冻性、离子电导性(离子电导率可达3.9 mS/m)和紫外屏蔽性方面具有明显优势,同时具有一定的抗疲劳性和弹性,且基于其组装的柔性应变传感器对人体运动表现出快速、稳定、可逆的信号响应。
近年来,柔性可拉伸的离子导电弹性体(ionic conductive elastomer,ICE)受到了广泛关注,在柔性制动
离子液体作为离子凝胶的主
纳米纤维素来源于自然界中储量第一的天然高分子化合物(纤维素),具有储量丰富、可再生、可生物降解、机械性能优异的特
氯化胆碱、丙烯酸、PA(质量分数50%)、聚乙二醇二丙烯酸酯(PEGDA)、2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮(光引发剂2959),分析纯,上海麦克林生化科技有限公司。二甲基亚砜(DMSO),分析纯,上海迈瑞尔化学技术有限公司。CNF,天津木精灵有限公司,TEMPO体系氧化法制备,羧基含量2.46 mmol/g,直径5~10 nm,长度0.4~1.0 μm。
称取一定摩尔比的氯化胆碱和丙烯酸,将其置于密封的平底烧瓶中,在90 ℃水浴锅中持续搅拌2 h,直至形成透明、稳定的溶液,然后向其中加入一定量的光引发剂2959、PEGDA与PA(PA添加量为相对丙烯酸的摩尔比,分别为0、0.5%、1%和2%),充分搅拌直至形成透明、稳定的溶液,即为PDES。
ICE的制备流程如

图1 ICE的制备流程图和样品的SEM图
Fig. 1 Preparation flow chart of ICE and SEM images of samples
采用溴化钾压片法,利用傅里叶变换红外光谱仪(FT-IR,FTIR-650,天津港东科技发展股份有限公司)对样品进行分析,扫描范围400~4000 c
采用紫外可见近红外分光光度计(UV-3600Plus,日本岛津公司)测试ICE样品的光学性能,将厚度2 mm的样品附着在玻璃板上,扫描范围200~800 nm,波长分辨率0.5 nm,扫描速度为中速,参比为空气。
在ICE的不同位置取样,样品尺寸为1 cm×1 cm×0.2 cm,与铜片和导线连接,用电化学工作站(CEI660E,上海辰华仪器有限公司)进行测试(测试频率范围0.001~10 kHz,交流信号振幅5 mV,温度25 ℃,相对湿度30%~35%),获取电化学阻抗谱图,据此计算电导率。
采用热重分析仪(TG,SDT650,美国TA公司)测试ICE样品的热稳定性,测试条件:氮气气氛,温度范围50~600 ℃,升温速率10 ℃/min。采用差示扫描量热仪(DSC,Q200,美国TA公司)进行降解速率测试,测试条件:氮气气氛,温度范围-40~20 ℃,升温速率10 ℃/min。

图2 样品的FT-IR谱图
Fig. 2 FT-IR spectra of samples

图3 ICE的机械性能
Fig. 3 Mechanical properties of ICE

图4 ICE的光学性能和电化学性能
Fig. 4 Optical and electrochemical properties of ICE
PDES中的氯化胆碱一方面作为HBA与丙烯酸之间形成氢键作用,另一方面氯化胆碱中的正负离子使得ICE具有离子导电性。如

图5 PA-CNF-PDES的热分析
Fig. 5 Thermal analysis of PA-CNF-PDES
由上述分析可知,所制备的ICE在机械性能、热稳定性、抗冻性和离子电导性方面优势较突出,因此,探索其组装的柔性应变传感器在人体运动监测方面的应用性能。

图6 基于ICE的柔性应变传感器在不同动作时所产生的相对电阻变化
Fig. 6 Changes of relative resistance of flexible strain sensor based on ICE under different actions
本研究采用紫外光引发原位聚合法将丙烯酸-氯化胆碱合成的可聚合低共熔溶剂(PDES)与纤维素纳米纤丝(CNF)气凝胶结合,并引入植酸(PA)以增强CNF与PDES之间的结合作用,制得离子导电弹性体(ICE),通过多种分析仪器对其化学结构和主要的物理性能进行了分析和表征,进一步探索了其在柔性应变传感器领域的应用。
3.1 通过红外光谱分析可知,PDES在CNF气凝胶的孔隙结构中成功聚合,所制备的ICE富含共价键和非共价键(氢键)。
3.2 当PA添加量为1%时,ICE的应变具有最大值,达到1378%;当PA添加量为0.5%时,ICE的应力最大,为0.38 MPa。同时,ICE具有一定的抗疲劳性和弹性、良好的离子导电性(离子电导率可达3.9 mS/m)、紫外屏蔽性、热稳定性和抗冻性。
3.3 利用ICE组装的柔性应变传感器实现了对人体不同运动部位(手指、手腕、膝盖)的实时检测,并表现出快速、稳定、可逆的信号响应。
参 考 文 献
Lee J, Tan M W M, Parida K, et al. Water-processable, Stretchable, Self-healable, Thermally Stable, and Transparent Ionic Conductors for Actuators and Sensors[J]. Advanced Materials, DOI: 10.1002/adma.201906679. [百度学术]
Kim Y M, Moon H C. Ionoskins: Nonvolatile, Highly Transparent, Ultrastretchable Ionic Sensory Platforms for Wearable Electronics[J]. Advanced Functional Materials, DOI: 10.1002/adfm.201907290. [百度学术]
Chang Q, He Y F, Liu Y Q, et al. Protein Gel’s Phase Transition: Toward Superiorly Transparent and Hysteresis-free Wearable Electronics[J]. Advanced Functional Materials, DOI: 10.1002/adfm.201910080. [百度学术]
Kadumudi F B, Jahanshahi M, Mehrali M, et al. A Protein-based, Water-insoluble, and Bendable Polymer with Ionic Conductivity: A Roadmap for Flexible and Green Electronics[J]. Advanced Science, DOI: 10.1002/advs.201801241. [百度学术]
Park S, Parida K, Lee P S, et al. Deformable and Transparent Ionic and Electronic Conductors for Soft Energy Devices[J]. Advanced Energy Materials, DOI: 10.1002/aenm.201701369. [百度学术]
Wang J K, Deng Y Q, Ma Z Z, et al. Lignin promoted the fast formation of a robust and highly conductive deep eutectic solvent ionic gel at room temperature for a flexible quasi-solid-state supercapacitor and strain sensors[J]. Green Chemistry, 2021, 23(14): 5120-5128. [百度学术]
Lin S T, Yuk H, Zhang T, et al. Stretchable Hydrogel Electronics and Devices[J]. Advanced Materials, 2016, 28(22): 4497-4505. [百度学术]
Sun X, Zhu Y L, Zhu J Y, et al. Tough and Ultrastretchable Liquid-free Ion Conductor Strengthened by Deep Eutectic Solvent Hydrolyzed Cellulose Microfibers[J].Advanced Functional Materials, DOI: 10.1002/adfm.202202533. [百度学术]
Tamate R, Hashimoto K, Horii T, et al. Self-healing Micellar Ion Gels Based on Multiple Hydrogen Bonding[J]. Advanced Materials, DOI: 10.1002/adma.201802792. [百度学术]
Yuan Y X, Zhou J L, Lu G Q, et al. Highly Stretchable, Transparent, and Self-adhesive Ionic Conductor for High-performance Flexible Sensors[J]. ACS Applied Polymer Materials, 2021, 3(3): 1610-1617. [百度学术]
Zhang P P, Guo W B, Guo Z H, et al. Dynamically Crosslinked Dry Ion-conducting Elastomers for Soft Iontronics[J]. Advanced Materials, DOI: 10.1002/adma.202101396. [百度学术]
Wang M, Lai Z B, Jin X L, et al. Multifunctional Liquid-free Ionic Conductive Elastomer Fabricated by Liquid Metal Induced Polymerization[J].Advanced Functional Materials, DOI: 10.1002/adfm.202101957. [百度学术]
Li G, Deng Z H, Cai M K, et al. A stretchable and adhesive ionic conductor based on polyacrylic acid and deep eutectic solvents[J]. npj Flexible Electronics, DOI: 10.1038/s41528-021-00118-8. [百度学术]
周全伟, 王 超, 杨桂花, 等. 离子液体预处理对奇岗草木素脱除率及酶解效率的影响[J]. 中国造纸, 2020, 39(6): 43-51. [百度学术]
ZHOU Q W, WANG C, YANG G H, et al. Effect of Ionic Liquid Pretreatment on the Lignin Removal and Enzymatic Hydrolysis of Miscanthus × giganteus[J]. China Pulp & Paper, 2020, 39(6): 43-51. [百度学术]
高 佳, 王攀攀, 王丽君, 等. 新型溶剂法制备溶解浆的研究进展 [J]. 中国造纸, 2022, 41(9): 106-112. [百度学术]
GAO J, WANG P P, WANG L J, et al. Recent Progress of Emerging Solvent for Dissolving Pulp Production[J]. China Pulp & Paper, 2022, 41(9): 106-112. [百度学术]
Hong S, Yuan Y, Liu C Z, et al. A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors[J].Journal of Materials Chemistry C, 2020, 8(2): 550-560. [百度学术]
Abbott A P, Capper G, Davies D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, DOI: 10.1039/b210714g. [百度学术]
Hansen B B, Spittle S, Chen B, et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications[J]. Chemical Reviews, 2021, 121: 1232-1285. [百度学术]
Li X Y, Ning C X, Li L, et al. Fabricating lignin-containing cellulose nanofibrils with unique properties from agricultural residues with assistance of deep eutectic solvents[J]. Carbohydrate Polymers, DOI: 10.1016/j.carbpol.2021.118650. [百度学术]
LI R A, Fan T, Chen G X, et al. Autonomous Self-healing, Anti-freezing, and Transparent Conductive Elastomers[J]. Chemistry of Materials, 2020, 32(2): 874-881. [百度学术]
李佩燚, 简博星, 李新平, 等. 低共熔溶剂预处理制备豆渣纤维素纳米纤丝的研究[J]. 中国造纸, 2021, 40(6): 28-33. [百度学术]
LI P Y, JIAN B X, LI X P, et al. Preparation of Cellulose Nanofibril from Okara Using Deep Eutectic Solvents[J]. China Pulp & Paper, 2021, 40(6): 28-33. [百度学术]
路 洁, 李明星, 周奕杨, 等. 纳米纤维素的制备及其在水凝胶领域的应用研究进展[J]. 中国造纸, 2021, 40(11): 107-117. [百度学术]
LU J, LI M X, ZHOU Y Y, et al. Research Advances in the Preparation of Nanocellulose and Its Applications in the Field of Hydrogels[J]. China Pulp & Paper, 2021, 40(11): 107-117. [百度学术]
Guan Q F, Yang H B, Han Z M, et al. Sustainable Cellulose-Nanofiber-based Hydrogels[J]. ACS Nano, 2021, 15: 7889-7898. [百度学术]
Wang Z S, Ma Z X, Wang Z X, et al. Cellulose nanocrystal/phytic acid reinforced conductive hydrogels for anti-freezing and antibacterial wearable sensors[J]. Carbohydrate Polymers, DOI: 10.1016/j.carbpol.2022.120128. [百度学术]
Zhang K L, Li R A, Chen G X, et al. Polymerizable deep eutectic solvent-based mechanically strong and ultra-stretchable conductive elastomers for detecting human motions[J]. Journal of Materials Chemistry A, 2021,9(8): 4890-4897. [百度学术]
Li X K, Liu J Z, Guo Q Q, et al. Polymerizable Deep Eutectic Solvent-based Skin-like Elastomers with Dynamic Schemochrome and Self-healing Ability[J]. Small, DOI: 10.1002/smll.202201012. [百度学术]
Wang M, Li R N, Chen G X, et al. Highly Stretchable, Transparent, and Conductive Wood Fabricated by in Situ Photopolymerization with Polymerizable Deep Eutectic Solvents[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14313-14321. CPP [百度学术]