摘要
基于纤维素开发了一种环保的高性能电致变色器件(ECD)。通过在纤维素膜表面旋涂聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS),获得纤维素膜/PEDOT:PSS透明导电基底,并与电解质复合构建ECD。随着纤维素膜表面PEDOT:PSS旋涂层数的增加,纤维素膜/PEDOT:PSS透明导电基底的导电率呈增加趋势,透光率呈降低趋势,旋涂3层PEDOT:PSS的纤维素膜/PEDOT:PSS透明导电基底具有77%的透光率和465 Ω/sq的电阻。通过施加3 V的正向电压,制备的ECD的透光率可在10 s内从77%下降至53%,且施加3 V的负向偏压,其透光率可以快速恢复。此外,制备的ECD电致变色能力在循环100次后仍然保持较为稳定的状态。
关键词
电致变色器件(ECD)是一种有效的颜色控制器件,可以通过调节负载电压实现其颜色的可控变
ECD的关键元件为透明导电基
纤维素具有来源广、可再生及可生物降解等优势,其在众多领域呈现出巨大的潜力,如光电转化、能量储存、电磁屏蔽等领
本研究通过溶解再生策略制备高透明度、高柔韧性的纤维素膜,采用旋涂的方式在纤维素膜表面沉积PEDOT:PSS导电材料,获得透明、导电的纤维素基底,并构建垂直结构的ECD,具体制备流程见

图1 基于纤维素膜/PEDOT:PSS的ECD制备流程示意图
Fig. 1 Schematic diagram of preparation process of ECD based on bamboo cellulose film /PEDOT: PSS
竹溶解浆购于福建省青山纸业股份有限公司;离子液体(氯化1-烯丙基-3-甲基咪唑[AMimCl])购于兰州雨陆精细化工有限公司;PEDOT:PSS购于西安宝莱特光电科技有限公司;二甲基亚砜(DMSO)购于上海阿拉丁生化科技股份有限公司;电解质(ENER-EI30M)购于上海幂方电子科技有限公司。
称取30 g离子液体加入到三口烧瓶中,将其置于80 ℃的集热式恒温加热磁力搅拌器中加热,称取0.5 g竹溶解浆并缓慢加入到三口烧瓶中加热搅拌,待溶解浆的纤维完全溶解后,关闭搅拌器静置1 h进行除泡。使用涂布机(GBC-A4,瑞安市浩宇股份有限公司)以20 cm/min的速度刮涂纤维素溶液成膜,将其浸入去离子水中静置以置换离子液体,获得纤维素膜,备用。
将纤维素膜置于匀胶机上,随后将配制好的PEDOT:PSS溶液先以1000 r/min和2000 r/min的转速旋涂9 s,再以2000 r/min的转速旋涂30 s,随后将其置于120 ℃的加热板上退火干燥10 min,获得旋涂1层纤维素膜/PEDOT:PSS透明导电基底。通过重复上述步骤制备得到旋涂2、3、4层的纤维素膜/PEDOT:PSS透明导电基底。
采用场发射扫描电子显微镜(FESEM,JSM-7500F,日本电子株式会社)对样品的表面形貌进行观察,样品表面喷金45 s,加速电压20 kV。采用原子力显微镜(AFM,MultiMode8,德国Bruker)对样品的形貌和表面粗糙度进行观察。采用拉曼光谱仪(LabRam HR Evolution)对样品的分子结构进行分析。采用紫外分光光度计(8453,美国安捷伦)对样品的光学性能进行测试。以空气为空白样品,用紫外分光光度计分别对样品进行透光率测试。采用双组合四探针方阻/电阻率测试仪(KDB-3,广州市昆德科技有限公司)、双组合四探针头(KDT-5,广州市昆德科技有限公司)对样品的导电性能进行测试,其测试的基本原理是使用4根平行的探针,其中2根探针给试样通以固定电流,另外2根探针测量试样的电压;将得到的数值乘以修正系数,即可得到试样的片电阻,如
(1) |
式中,Rs为试样片电阻;V为测试电压;I为固定电流;C为修正系数。

图2 纤维素膜和纤维素膜/PEDOT:PSS透明导电基底FESEM图
Fig. 2 FESEM images of cellulose film and cellulose film/PEDOT: PSS transparent conductive substrate
进一步利用AFM观察纤维素膜及纤维素膜/PEDOT:PSS透明导电基底的表面形貌,如

图3 纤维素膜/PEDOT:PSS透明导电基底的物理化学性质
Fig. 3 Physicochemical charactrization of cellulose film/PEDOT: PSS transparent conductive substrate
注 (a)纤维素膜的AFM图; (b)旋涂3层PEDOT:PSS的透明导电基底的AFM图; (c)纤维素膜高度差; (d)纤维素膜粗糙度;(e)纤维素膜厚度; (f)旋涂不同层数PEDOT:PSS透明导电基底的净负载量; (g) 纤维素膜/PEDOT:PSS透明导电基底的拉曼谱图。
纤维素是本征绝缘材

图4 纤维素膜/PEDOT:PSS 透明导电基低的光学、电学性能及实物图
Fig. 4 Transmittance, conductive resistance and photos of cellulose film/PEDOT: PSS transparent conductive substrate
PEDOT:PSS对纤维素膜/PEDOT:PSS透明导电基底的电学性能具有重要影响,其旋涂层数的增加,可以大幅度降低电阻,提高其电导率,如
PEDOT:PSS在不同的电压条件下,具有不同的氧化态和还原态,导致其颜色呈现规律性的变
(2) |
(3) |
利用纤维素膜/PEDOT:PSS透明导电基低可以构建ECD,其结构示意图如

图5 基于纤维素膜/PEDOT:PSS透明导电基底的ECD结构示意图
Fig. 5 Schematic diagram of ECD structure based on cellulose film/PEDOT: PSS transparent conductive substrate
通过构建透光率、电压和时间的关系,可以分析基于纤维素膜/PEDOT:PSS透明导电基底的ECD电致变色响应性能。施加正向电压,PEDOT:PSS处于氧化态,基于纤维素膜/PEDOT:PSS透明导电基底构建的ECD的透光率呈降低趋势,可以在2 s内实现快速下降,并最终降低至50%左右,如

图6 基于纤维素膜/PEDOT:PSS透明导电基底的ECD运行稳定性
Fig. 6 Operation stability of ECD based on cellulose film/PEDOT: PSS transparent conductive subtrate
注 (a)、(b)不同负载电压下的透光率;(c)不同负载电压下的响应时间;(d)正、反向负载电压下的透光率;(e)负载3 V电压的变色循环图;(f)样品变色实物图。
本研究进一步分析了纤维素膜/PEDOT:PSS透明导电基底构建的ECD运行稳定性。首先对器件施加3 V的正向负载电压,使其转化为氧化态,之后关闭负载电压30 s,再施加3 V的反向负载电压,使其转化为还原态,最后关闭负载电压30 s,完成1个电致变色循环。如
本研究通过旋涂实验在纤维素膜表面生长具有良好光电性能的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS),制备纤维素膜/PEDOT:PSS透明导电基底,并组装绿色环保的电致变色器件(ECD)。
3.1 通过测试导电基底的光电性能,结果表明旋涂层数对于纤维素膜/PEDOT:PSS透明导电基底的电阻影响很大,在旋涂3层PEDOT:PSS时,其电阻为465 Ω/sq,透光率为77%。
3.2 纤维素基ECD具有良好的电致变色能力,通过施加3 V电压,可以实现其透光率从77%到53%的快速变化,且在循环100次后仍然具有良好的电致变色性能。
参考文献
In Y R, Kim Y M, Lee Y, et al. Ultra-low Power Electrochromic Heat Shutters through Tailoring Diffusion-controlled Behaviors[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30635-30642. [百度学术]
Liu G, Liu Y, Zhang M, et al. Comparing Build Architecture and Electrolyte of ITO-free Flexible Patterned Organic Screen-printed ECDs Based on a Novel PEDOT:PSS Compound Film Post-treated with Strong and Weak Organic Acids[J]. Organic Electronics, DOI:10.1016/j.orgel.2020.105674. [百度学术]
Jensen J, Hösel M, Dyer A L, et al. Development and Manufacture of Polymer‐based Electrochromic Devices[J]. Advanced Functional Materials, 2015, 25(14): 2073-2090. [百度学术]
Singh R, Tharion J, Murugan S, et al. ITO-free Solution-processed Flexible Electrochromic Devices Based on PEDOT:PSS as Transparent Conducting Electrode[J]. ACS Applied Materials & Interfaces, 2017, 9(23): 19427-19435. [百度学术]
Zhao F, Zuo L, Li Y, et al. High‐performance Upscaled Indium Tin Oxide–Free Organic Solar Cells with Visual Esthetics and Flexibility[J]. Solar RRL, DOI:10.1002/solr.202100339. [百度学术]
Lu B Q, Zhu Y J, Chen F. Highly Flexible and Nonflammable Inorganic Hydroxyapatite Paper[J]. Chemistry—A European Journal, 2014, 20(5): 1242-1246. [百度学术]
Lu S K, Huang J T, Lee T H, et al. Flexibility of the Indium Tin Oxide Transparent Conductive Film Deposited onto the Plastic Substrate[J]. Smart Science, 2014, 2(1): 7-12. [百度学术]
Zhang S, Kumar P, Nouas A S, et al. Solvent-induced Changes in PEDOT:PSS Films for Organic Electrochemical Transistors[J]. APL Materials, DOI:10.1063/1.4905154. [百度学术]
Nardes A M, Janssen R A J, Kemerink M. A Morphological Model for the Solvent-enhanced Conductivity of PEDOT: PSS Thin Films[J]. Advanced Functional Materials, 2008, 18(6): 865-871. [百度学术]
Wang Y, Zhong X, Wang W, et al. Flexible Cellulose/Polyvinyl Alcohol/PEDOT:PSS Electrodes for ECG Monitoring[J]. Cellulose, 2021, 28(8): 4913-4926. [百度学术]
Huang X, Zeng Z, Fan Z, et al. Graphene‐based Electrodes[J]. Advanced Materials, 2012, 24(45): 5979-6004. [百度学术]
Wen Y, Xu J. Scientific Importance of Water‐processable PEDOT:PSS and Preparation, Challenge and New Application in Sensors of Its Film Electrode: A Review[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(7): 1121-1150. [百度学术]
Sun B, Long Y Z, Chen Z J, et al. Recent Advances in Flexible and Stretchable Electronic Devices via Electrospinning[J]. Journal of Materials Chemistry C, 2014, 2(7): 1209-1219. [百度学术]
Gao L, Chao L, Hou M, et al. Flexible, transparent nanocellulose paper-based perovskite solar cells[J]. NPJ Flexible Electronics, DOI:10.1038/s41528-019-0048-2. [百度学术]
Zhu H, Fang Z, Preston C, et al. Transparent Paper: Fabrications, Properties, and Device Applications[J]. Energy & Environmental Science, 2014, 7(1): 269-287. [百度学术]
Hu Y, Niu T, Liu Y, et al. Flexible Perovskite Solar Cells with High Power-per-weight: Progress, Application, and Perspectives[J]. ACS Energy Letters, 2021, 6(8): 2917-2943. [百度学术]
郭 旭. 基于 PET 衬底的柔性顶发射有机电致发光器件[D]. 南京:南京邮电大学, 2013. [百度学术]
GUO X. Flexible Top-emitting Organic Light Emitting Devices Based on PET Substrate[D]. Nanjing: Nanjing University of Posts and Telecommunications ,2013. [百度学术]
Tu H, Zhu M, Duan B, et al. Recent Progress in High‐strength and Robust Regenerated Cellulose Materials[J]. Advanced Materials, DOI:10.1002/adma.202000682. [百度学术]
Song Y, Xu Y, Li D, et al. Sustainable and Superhydrophobic Lignocellulose-based Transparent Films with Efficient Light Management and Self-cleaning[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 49340-49347. [百度学术]
陶 涛, 陈裙凤, 郑亦玲, 等. 纤维素导电基底及其柔性电子器件的研究进展[J]. 复合材料学报, 2021, 38(8): 2435-2452. [百度学术]
TAO T, CHEN Q F, ZHENG Y L, et al. Research Progress of Cellulose Conductive Substrates and Its Flexible Electronic Devices[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2435-2452. [百度学术]
Li J, Yang H, Huang K, et al. Conductive Regenerated Cellulose Film as Counter Electrode for Efficient Dye-sensitized Solar Cells[J]. Cellulose, 2018, 25(9): 5113-5122. [百度学术]
Gardner D J, Oporto G S, Mills R, et al. Adhesion and Surface Issues in Cellulose and Nanocellulose[J]. Journal of Adhesion Science and Technology, 2008, 22(5/6): 545-567. [百度学术]
Martinu L, Poitras D. Plasma Deposition of Optical Films and Coatings: A Review[J]. Journal of Vacuum Science & Technology A, 2000, 18(6): 2619-2645. [百度学术]
Naghdi S, Rhee K Y, Hui D, et al. A Review of Conductive Metal Nanomaterials as Conductive, Transparent, and Flexible Coatings, Thin Films, and Conductive Fillers: Different Deposition Methods and Applications[J]. Coatings, DOI:10.3390/coatings8080278. [百度学术]
Zheng Q, Li H, Zheng Y, et al. Cellulose-based Flexible Organic Light-emitting Diodes with Enhanced Stability and External Quantum Efficiency[J]. Journal of Materials Chemistry C, 2021, 9(13): 4496-4504. [百度学术]
刘国栋, 李 靖, 张美云, 等. 纸基导电聚合物薄膜的制备及导电性提高机理的探究[J]. 中国造纸学报, 2021, 36(4): 25-32. [百度学术]
LIU G D, LI J, ZHANG M Y, et al. Preparation of Paper-based Conductive Polymer Films and Investigation of the Mechanism of Conductivity Improvement[J]. Transactions of China Pulp and Paper, 2021, 36(4): 25-32. [百度学术]
Giese K. The Effects of Cellulose Insulation Quality on Electrical Intrinsic Strength[J]. IEEE Electrical Insulation Magazine, 1994, 10(5): 38-42. [百度学术]
Volkov A V, Wijeratne K, Mitraka E, et al. Understanding the Capacitance of PEDOT: PSS[J]. Advanced Functional Materials, DOI:10.1002/adfm.201700329. CPP [百度学术]