摘要
采
制浆是造纸工业中的重要一环,其中硫酸盐法制浆是最常用的制浆工艺。硫酸盐法制浆过程可以去除木材中约97%的木质
本研究首先向银杏植株中投入
实验所用原料为6年生银杏植株,产地为湖北省。松伯醇葡萄糖苷-[α
在6月4日选取未完全木质化的银杏植株,在其顶部主干部位进行截取,获得直径15~25 mm、高度30 cm,并带有20~25片叶子的银杏枝条。将每根植株浸泡在200 mL配置好的溶液中,该溶液含有松伯醇葡萄糖苷-[α
将银杏植株在人工气候箱中培养1个月,剥去外皮,从形成层向髓心方向切取新生木质部约1 mm,风干后,用Wiley粉碎机磨至40~60目粉末。取银杏木粉50 g(以绝干计),按照硫化度25%、用碱量30%(以Na2O计)、固液比1∶10的条件,在高温反应釜中蒸煮,温度175 ℃,升温1 h,保温3 h,所得纸浆得率为50%,卡伯值为43。
采用酶解法提取纸浆中的残余木质素,先将上述同位素标记的硫酸盐浆用PFI磨浆机进行打浆处理,最终测得加拿大游离度为270 mL的纸浆。称取1 g纤维素酶和1 g半纤维素酶加入到400 mL乙酸/乙酸钠缓冲溶液(pH值=4.5)中进行溶解,通过G4砂芯漏斗过滤,滤液低温保存。称取未漂硫酸盐浆24 g,均分到4个碘量瓶中,每个碘量瓶加入酶溶液100 mL,再加150 mL缓冲溶液,然后在45 ℃下振荡48 h,每次酶解后将2个碘量瓶内的样品合并,共酶解4次,最后离心分离残余物与溶液,残余物用稀HCl(pH值=2)充分洗涤,冷冻干燥。参考Lin等

图1 未漂硫酸盐浆的制备及残余木质素的分离
Fig. 1 Preparation of unbleached kraft pulp and isolation of residual lignin
将培养完成后的银杏木粉进行苯-醇(2/1,v/v)和热水抽提,然后通过元素分析仪(FLASH 2000型)和同位素质谱仪(Delta V型)联用测
13C | (1) |
13Cα | (2) |
D/H=0.015575%×(1+δD÷1000) | (3) |
D6/H6=(D/H-0.013505%)÷0.45×5+0.013505% | (4) |
在Bruker Avance Ⅲ型600 MHz光谱仪上,使用交叉极化(CP)和魔角自旋(MAS)对培养后的银杏植株粉末(200目)进行固
13C
样品 | 13C(VPDB) | 13Cα | D (VSMOW) | D6/H6/% |
---|---|---|---|---|
未标记 | -27.04 | 1.08 | -128.45 | 0.01 |
| 29.43 | 3.47 | 588.78 | 0.14 |
高分辨率CP/MAS

图2 银杏木粉的CP/MAS
Fig. 2 CP/MAS
注 a:
信号 | 化学位移δ | 官能团归属 | ||
---|---|---|---|---|
a | b | c | ||
1 | 174.3 | 174.2 | — | 糖醛酸及其酯中的C6,肉桂酸衍生物及其酯中的Cγ |
2 | 149.5 | 149.7 | — | 愈创木基中的C3、C4 |
3 | 133.6 | 134.0 | 134.0 | 松伯醇中的Cα |
4 | 105.3 | 105.2 | 105.6 | 与碳水化合物以缩醛键连接的木质素中的Cα,纤维素C1 |
5 | 89.5 | 89.4 | 90.1 | 愈创木基β—5结构中的Cα,结晶区纤维素C4 |
6 | 83.9 | 83.7 | 84.2 | 与碳水化合物以苯甲醚键连接的木质素中的Cα |
7 | 75.3 | 75.3 | 75.5 | 苯甲酯键型LCC结构Cα,纤维素与半纤维素中的C2、C3、C5 |
8 | 72.5 | 72.5 | 72.9 | 愈创木基β—O—4结构中Cα,纤维素C2、C3、C5 |
9 | 65.6 | 65.5 | 66.2 | 葡萄糖基C6,苯基香豆满及肉桂醇中的Cγ |
10 | 62.5 | 62.6 | 63.0 | 纤维素中C6、愈创木基β—O—4结构中Cγ、β—1结构中的Cα和Cβ |
12 | 56.3 | 56.3 | — | —OCH3 |
13 | 21.5 | 21.5 | — | —CH3 |
使用纤维素酶和半纤维素酶对硫酸盐法蒸煮后的浆料进行酶解处理,降解掉大部分多糖组分,减少糖组分在核磁共振测试中的信号。对硫酸盐法蒸煮后CEL-Alk中碱溶木质素部分进行

图3 银杏CEL-Alk
Fig. 3
注 a: α
信号 | 化学位移δ | 化学位移归属 | |
---|---|---|---|
a | b | ||
1 | 178.26 | — | 未知 |
2 | 177.13 | 176.50 | 阿魏酸的—─COO─ |
3 | 174.76 | 174.70 | 阿魏酸的─COO─,乙酰基中的─CO |
4 | 172.33 | 172.33 | 脂肪族酸中的─COOH,肉桂酸、苯甲酸、苯乙烯酸的─COO─,脂肪族酯、乙酰基中的─CO,糖醛酸和酯中的C6,肉桂酸和酯中的Cγ |
5 | 160.02 | 160.02 | 未知 |
6 | 149.59 | 149.23 | 愈创木基C3(醚化的) |
7 | 147.40 | 147.30 | 愈创木基C4(醚化的),肉桂酸中的Cα |
8 | 129.77 | 129.78 | 愈创木基C1,松伯醇中的Cα和Cβ,对香豆醇中的C2和C6 |
9 | 124.32 | 124.32 | 带有α─CO的愈创木基C6,对羟苯基中的C1 |
10 | 119.66 | 119.92 | 愈创木基C6,愈创木基β─芳基醚中的C6 |
11 | 115.35 | 115.27 | 愈创木基C5,对羟苯基中的C3和C5,β─芳基醚中的C5 |
12 | 111.20 | 111.3 | 愈创木基C2,阿魏酸中的C2 |
13 | 102.10 | — | 苯基糖苷、甘露糖、聚木糖上的C1,与糖单元有缩醛键连接的Cα |
14 | 97.06 | — | 苯基糖苷,β-木糖、β-葡萄糖C1,聚木糖分子端基上的C2 |
15 | 80.6 | — | 与碳水化合物以苯甲醚键连接的木质素Cα |
16 | 76.6 | — | 甘露糖上的C4/C5,木糖上的C3/C4,葡萄糖C3/C5/C6,愈创木基β─O─4(苏型)的Cα |
17 | 72.5 | — | 愈创木基β─O─4(赤型)、β-芳基醚中的Cα,木聚糖上的C2,α-葡萄糖、甘露糖上的C2/C3,β─β结构中的Cγ |
18 | 67.3 | — | Ar─CHOH─CH3;α, β-甘露糖C4,β-木糖C5 |
19 | 66.34 | 65.91 | 愈创木基、苯基香豆满和肉桂醇中的Cγ,糖醛酸C5;α, β-甘露糖C4,β-木糖C5 |
20 | 63.16 | 63.16 | 愈创木基β─O─4、β─5结构单元中带有α─CO的Cγ,木糖上的C5,肉桂醇、β─β单元以及苯基香豆满中的Cγ,5─5结构和木糖新形成的LCC结构上的Cα,β─1结构中的Cα和Cβ |
21 | 60.29 | 60.28 | β─O─4、β-芳基醚中的Cγ,葡萄糖、半乳糖上的C6,4─O─葡萄糖醛酸上的C5 |
22 | 55.76 | 55.75 | 芳香甲氧基 |
23 | 33.87 | 33.81 | 饱和脂肪族侧链中的CH3和CH2 |
24 | 31.41 | 31.41 | ─CH2─(G─CH2─CH2─CH2OH),─CH3,─CH2 |
25 | 29.13 | 29.12 | ─CH2─(C5─CH2─C5),─CH3,─CH2 |
26 | 26.68 | 26.68 | ─CH3和/或─CH2 |
27 | 24.64 | 24.62 | 饱和脂肪族侧链中的CH3和CH2 |
28 | 22.22 | 22.22 | 乙酰基中─CH3,─CH2 |
29 | 21.37 | 21.2 | 乙酰基中─CH3,─CH2 |
30 | 20.83 | 20.59 | 乙酰基中─CH3,─CH2 |
31 | 14.08 | 14.08 | 饱和脂肪族侧链中的CH3和CH2 |

图4 银杏CEL-Alk
Fig. 4

图5 银杏材硫酸盐法制浆后残余木质素及LCC结构
Fig. 5 Residual lignin and LCC structure of ginkgo wood after kraft pulping
通过
化学位移δ=75.8(No.16)处,在未标记的CEL-Alk核磁谱图上未发现明显的信号峰,而在α
1H NMR的共振信号较宽且重叠,测出的谱图较粗
由
信号 | 化学位移δ | 化学位移归属 |
---|---|---|
1 | 5.58~5.43 | 甘露糖中H1,β—5结构中Hα |
2 | 4.78~4.70 | 葡萄糖C6上的D |
3 | 4.68~4.53 | 葡萄糖、甘露糖C6上的D |
4 | 3.82~3.72 | 葡萄糖C6上的D,甲氧基上的H |
5 | 3.58~3.05 | DMSO-d6溶剂中的水峰 |
6 | 2.50 | DMSO-d6溶剂峰 |
7 | 1.92~1.89 | 脂肪族乙酰基中—CH3 |
8 | 1.27~1.22 | 高度掩盖的脂肪族H |
9 | 0.87~0.83 | 未知 |
将松柏醇葡萄糖苷-[α
3.1
3.2
3.3
参考文献
BALAKSHIN M Y, CAPANEMA E A, CHEN C L, et al. Elucidation of the Structures of Residual and Dissolved Pine Kraft Lignins Using an HMQC NMR Technique[J]. Journal of Agricultural and Food Chemistry, 2003, 51(21):6116-6127. [百度学术]
LAWOKO M, BERGGREN R, BERTHOLD F, et al. Changes in the lignin-carbohydrate complex in softwood kraft pulp during kraft and oxygen delignification[J]. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 2004, 58(6):603-610. [百度学术]
XIE Y M, ZHANG K, CUI S, et al. A Review on the Structure and Biodegradation of Cellulose-Lignin Complexes[J]. Paper and Biomaterials, 2020, 5(4):44-50. [百度学术]
范建云, 王鹏, 谢益民. 硫酸盐法蒸煮过程中木质素-聚木糖复合体化学结构的变化[J]. 中国造纸学报, 2015, 30(1):1-5. [百度学术]
FAN J Y, WANG P, XIE Y M. The Change of Chemical Structure of Lignin-xylan Complex in Kraft Pulping[J]. Transactions of China Pulp and Paper, 2015, 30(1):1-5. [百度学术]
Du X Y, PÉREZ-BOADA M, FERNÁNDEZ C, et al. Analysis of Lignin-Carbohydrate and Lignin-Lignin Linkages after Hydrolase Treatment of Xylan-Lignin, Glucomannan-Lignin and Glucan-Lignin Complexes from Spruce Wood[J]. Planta, 2014, 239(5):1079-1090. [百度学术]
BALAKSHIN M Y, CAPANEMA E A, CHANG H M. MWL Fraction with a High Concentration of Lignin-carbohydrate Linkages: Isolation and 2D NMR Spectroscopic Analysis[J]. Holzforschung, 2007, 61(1):1-7. [百度学术]
LIN S Y, DENCE C W. Methods in Lignin Chemistry[M]. Springer Series in Wood Science, 1992:250-273. [百度学术]
BALAKSHIN M, CAPANEMA E, BWERLIN A. Isolation and Analysis of Lignin-carbohydrate Complexes Preparations with Traditional and Advanced Methods[J]. Studies in Natural Products Chemistry, 2014, 42(4):83-115. [百度学术]
LAWOKO M, HENRIKSSON G, GELLERSTEDT G. New Method for Quantitative Preparation of Lignin-carbohydrate Complex from Unbleached Softwood Kraft Pulp: Lignin-Polysaccharide Networks I[J]. Holzforschung, 2003, 57(1):69-74. [百度学术]
POLČIN J, BEZÚCH B. Enzymic Isolation of Lignin from Wood and Pulps[J]. Wood Science and Technology, 1978, 12(2):149-158. [百度学术]
TERASHIMA N, HAFRÉN J, WESTERMARK U, et al. Nondestructive Analysis of Lignin Structure by NMR Spectroscopy of Specifically
XIE Y M, TERASHIMA N. Selective Carbon 13-Enrichment of Side Chain Carbons of Ginkgo Lignin Traced by Carbon 13 Nuclear Magnetic Resonance[J]. Mokuzai Gakkaishi, 1991, 37(10):935-941. [百度学术]
XIE Y M, ROBERT D R, TERASHIMA N. Selective Carbon 13-Enrichment of Side Chain Carbons of Ginkgo Lignin Traced by Carbon 13 Nuclear Magnetic Resonance[J]. Plant Physiology and Biochemistry, 1994, 32(2):243-249. [百度学术]
LIN S Y, DENCE C W. Methods in Lignin Chemistry[M]. Springer Series in Wood Science, 1992:71-74. [百度学术]
GUADALIX M E, ALMENDROS G, MARTÍNEZ A T, et al. A
EVSTIGNEYEV E I, MAZUR A S, KALUGINA A V, et al. Solid-state
KANG X, KIRUI A, WIDANAGE M D, et al. Lignin-polysaccharide Interactions in Plant Secondary Cell Walls Revealed by Solid-State NMR[J]. Nature Communications, 2019, 10(1):1-9. [百度学术]
LÜDEMANN H D, NIMZ H H. Carbon-13 Nuclear Magnetic Resonance Spectra of Lignins[J]. Biochemical and Biophysical Research Communications, 1973, 52(4):1162-1169. [百度学术]
XIE Y M, YASUDA S, WU H, et al. Analysis of the Structure of Lignin-carbohydrate Complexes by the Specific
TERASHIMA N, ATALLA R H, VANDERHART D L. Solid State NMR Spectroscopy of Specifically
XIE Y M, LIU Y C, JIANG C, et al. The Existence of Cellulose and Lignin Chemical Connections in Ginkgo Traced by
范建云, 谢益民, 杨海涛, 等.
FAN J Y, XIE Y M, YANG H T, et al. Study on the Bonds between Lignin and Cellulose by
FROASS P M, RAGAUSKAS A J, JIANG J E. Chemical Structure of Residual Lignin from Kraft Pulp[J]. Journal of Wood Chemistry and Technology, 1996, 16(4):347-365. [百度学术]
KRINGSTAD K P, MÖRCK R.
周燕, 谢益民, 杨志勇, 等. 硫酸盐法蒸煮过程中马尾松LCC的变化[J]. 中国造纸学报, 2007, 22(2):8-12. [百度学术]
ZHOU Y, XIE Y M, YANG Z Y, et al. The Change of LCC in Pinus Massoniana Lamb during Kraft Pulping[J]. Transactions of China Pulp and Paper, 2007, 22(2):8-12. [百度学术]
杨海涛, 郑兴, 姚兰, 等. 同位素标记法用于植物纤维中LCC蒸煮过程中结构变化的研究[J]. 化工学报, 2013, 64(3):1069-1075. [百度学术]
YANG H T, ZHENG X, YAO L, et al. Tracking Structural Change of LCC in Plant by Isotopic Tracer Technique[J]. CIESC Journal, 2013, 64(3):1069-1075. [百度学术]
CARVALHO D M, LAHTINEN M H, LAWOKO M, et al. Enrichment and Identification of Lignin-carbohydrate Complexes in Softwood Extract[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(31):11795-11804. [百度学术]
DESHPANDE R, GIUMMARELLA N, HENRIKSSON G, et al. The reactivity of lignin carbohydrate complex (LCC) during manufacture of dissolving sulfite pulp from softwood[J]. Industrial Crops and Products, 2018, 115:315-322. [百度学术]
BALAKSHIN M, CAPANEMA E, GRACZ H, et al. Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy[J]. Planta, 2011, 233(6):1097-1110. [百度学术]
夏青, 姚兰, 张宏伟, 等. 硫酸盐浆酶解液中LCC的提取及性质研究[J]. 中国造纸学报, 2015, 30(3):5-9. [百度学术]
XIA Q, YAO L, ZHANG H W, et al. Isolation and Characteristic Research of LCC from Enzymatic Hydrolysis Liquor of Kraft Wheat Straw Pulp[J]. Transactions of China Pulp and Paper, 2015, 30(3):5-9. [百度学术]
裴继诚. 植物纤维化学[M]. 北京: 中国轻工业出版社, 2012:91-99. [百度学术]
PEI J C. Lignocellulosic Chemistry[M]. Beijing: China Light Industry Press, 2012:91-99. [百度学术]
TOIKKA M, SIPILA J, TELEMAN A, et al. Lignin-carbohydrate model compounds. Formation of lignin-methyl arabinoside and lignin-methyl galactoside benzyl ethers via quinine methide intermediates[J]. Journal of the Chemical Society Perkin Transactions, 1998, 1:3813-3818. [百度学术]
TERASHIMA N, SEGUCHI Y, ROBERT D. Selective
杨志勇. 马尾松磨木木质素在硫酸盐法蒸煮过程中的降解及缩合[J]. 中国造纸学报, 2017, 32(3):11-15. [百度学术]
YANG Z Y. Degradation and Condensation of MWL from Pinus massoniana Lamb during Kraft Cooking[J]. Transactions of China Pulp and Paper, 2017, 32(3):11-15. [百度学术]
中野凖三. 木质素的化学[M]. 北京: 轻工业出版社, 1988:227-238. [百度学术]
NAKANO K. Chemistry of Lignin[M]. Beijing: Light Industry Press, 1988:227-238. [百度学术]
DEL RÍO J C, JOSÉ C, PRINSEN P, et al. Lignin-carbohydrate complexes from sisal (Agave sisalana) and abaca (Musa textilis): chemical composition and structural modifications during the isolation process[J]. Planta, 2016, 243(5):1143-1158. [百度学术]
MIN D Y, JAMEEL H, CHANG H M, et al. The structural changes of lignin and lignin-carbohydrate complexes in corn stover induced by mild sodium hydroxide treatment[J]. RSC Advances, 2014, 4:10845-10850. [百度学术]
TANEDA H, NAKANO J, HOSOYA S, et al. Stability of α-Ether type Model Compounds During Chemical Pulping Processes[J]. Journal of Wood Chemistry and Technology, 1987, 7(4):485-497. CPP [百度学术]