摘要
本课题从纸基材料(PBM)的多层级结构和物化改性方法的角度,系统阐述了PBM水蒸气阻隔性能的研究现状及发展趋势。首先,分析了水蒸气阻隔的特殊性及在PBM不同层级结构上的传输机制;其次,论述了PBM的3D网络内部结构修饰处理对水蒸气阻隔性能影响的研究进展;再次,基于PBM界面结构的改性研究,对比分析了各类阻隔性涂层对水蒸气阻隔性能的影响;最后重点总结了超疏水PBM的研究现状,分析了超疏水性能和水蒸气阻隔性能之间的协同对立关系,探讨了改善超疏水PBM水蒸气阻隔性能的必要性,并为超疏水PBM实现实际应用提出了研发思路和方向。
纸基材料(PBM)是以天然纤维素纤维(含微纳精细结构)为基材,具有代表性的多孔三维(3D)网络内部结构及表面特征结构(多层级结构)的可持续绿色材料,广泛应用于包装、医疗、电子、建筑和航空航天等领域,在日常生活和生产中发挥着重要作
根据需阻隔的气体性质(极性/非极性)和液体类型,研究不同处理工艺和技术来提高和丰富PBM的性能以满足不同领域的需求,已成为PBM功能化研究的趋
本课题从PBM多层级结构的固有属性和物化改性方法出发,系统综述了PBM在水蒸气阻隔性能方面的研究进展、发展趋势及应用现状。
PBM是采用一定的成形工艺和表面处理工艺形成的特殊膜材
水在PBM的各级层次结构上具有不同的特定传输机制,能实现宏观和微观层级结构上的吸附、扩散和渗透。

图1 纸基材料多层次结构与水分子的相互作用
Fig. 1 Interactions between multi-level hierarchical structures of PBM and water molecules
注 (a) 纤维素纤维在吸湿过程中吸附的各种形式的
纸基材料的多层级结构所吸附的水有液态和气态两种相态,水蒸气阻隔性能对纸基材料物化结构的要求比阻水(一般指液态水)性能对纸基材料物化结构的要求高得多。水蒸气分子的直径(0.4 nm)比由纤维素分子链依靠范德华力和分子间氢键力构成的原细纤维的直径(1.5~5 nm)小,且水蒸气分子的内聚力比液态水分子的内聚力
PBM的水蒸气阻隔性能对于拓展PBM的应用领域和使用场景至关重
PBM的3D网络框架结构主要由富含极性羟基的亲水性纤维素纤维互相交织而成。为提高PBM的水蒸气阻隔性能,一方面可对纤维素纤维进行改性,尽可能减少纤维素纤维微纳精细结构上游离的极性羟基;另一方面需延长水蒸气的透过路径,尽可能降低PBM的孔隙率和平均孔径。在造纸行业,一般通过浆内施胶和添加无机填料来达到上述目

图2 为了提高水蒸气阻隔性能,PBM的3D结构调控的一般方法举例
Fig. 2 Examples of general methods for 3D structure regulation of PBM to improve water vapor barrier performance
注 (a)纤维素纤维层面的疏水化改性中典型的化学反应类型汇
PBM相比于合成聚合物基材料(如塑料等)的一项重要优势是其具有生物相容性、完全可降解和可回收性,为了提高PBM的水蒸气阻隔性能而对纤维素纤维进行的疏水化改性处理不应该损害其优势特性。因此,对纤维素纤维的疏水化改性处理逐渐向绿色可持续的方向发展。

图3 纤维素纤维不同疏水化改性方法处理实例
Fig. 3 Examples of hydrophobic modification methods of cellulosic fibers
注 (a) PCL改性前后BSK纤维表面SEM
研究表明,改性方法不同,对PBM孔隙率的影响不同,对PBM整体的水蒸气阻隔性能的改善效果不

图4 纤维素纤维疏水化改性对PBM的3D结构影响
Fig. 4 Effects of hydrophobic modification of cellulosic fibers on the 3D structure of PBM
注 (a) 未改性的针叶木纤维SEM
纳米微纤化纤维素(NFC)是由天然纤维素纤维经过一定的机械和/或化学处理方法获得的至少一个维度为纳米级(<100 nm)的环境友好型天然刚性高分子材料,具有比表面积大、强度高、密度低等特

图5 NFC-纳米粒子复合PBM的3D网络结构对水蒸气阻隔性能的影响研究实例
Fig. 5 A case study on the effect of 3D network of NFC-nanoparticles composite PBM on water vapor barrier performance
注 (a) NFC-MMT纳米复合PBM的两种成形过程示意
在保证PBM强度的前提下,通过调控纸基纤维3D网络本身的结构增强其对水蒸气的有效阻隔性能的改性空间有限,因此大量相关研究集中在选取表面改性的方式来调控PBM的水蒸气阻隔性
以可再生资源为原料的生物基聚合物,具有可持续性及绿色环保的特性,成为近年来材料领域的研究热

图6 可降解聚合物基阻隔性涂层举例
Fig. 6 Examples of degradable polymer-based barrier coatings
注 (a) 乙酰化纤维素纤维涂布纸的制备过程示意
石油基可生物降解聚合物主要以石油化工单体为合成原料,但其生产成本较高,且由于石油资源的不可再生性,必将面临原材料短缺和价格上涨的问题,但石油基可生物降解聚合物的水蒸气阻隔性能明显优于生物基聚合物,且相比于传统不可降解类材料具有明显的环保优势,因此石油基可生物降解聚合物复合PBM的开发与实际应用探索成为近年来PBM水蒸气阻隔领域的研究重
NFC基涂层的阻隔性能主要是由于纤维素纤维尺寸的减少,纤维素纤维的比表面积成倍的增加,暴露出更多的游离羟基,大大增加了纤维之间的结合面积,使得NFC凝胶溶液具有一定的成膜性,从而有效地降低了PBM的孔隙率和平均孔径。但由于NFC本身的亲水性能,一般需要NFC疏水改性或与其他疏水性纳米粒子共混复合,才能获得水蒸气阻隔性能良好的NFC基阻隔性涂层的PBM。Wang等

图7 NCC基复合阻隔涂
Fig. 7 NCC-based composite barrier coating
注 (a) APTES-NCC/AESO乳液合成、涂布过程和阻隔机理示意图;(b) 未涂布瓦楞原纸的表面和截面形貌结构;(c) NCC/AESO乳液涂布瓦楞原纸的表面和截面形貌结构;(d) APTES-NCC/AESO乳液涂布瓦楞原纸的表面和截面形貌结构。
此外,为提高水蒸气阻隔性能,对PBM表面改性除了传统的涂布和覆膜工艺,还有溶胶-凝胶处理、原子层沉积、等离子改性处理等方式。Cairns等
如上所述,针对天然纤维素纤维在众多应用领域中防水性能差(天然亲水属性)的共性问题,特别是增强和调控PBM对水蒸气的有效阻隔性能,科研人员已经通过多种修饰手段实现基于其应用特性的理性化精确设计,进行了较为系统性的疏水改性工艺及相关理论的研
超疏水表面是指液态水滴与固体表面形成的静态表观接触角≥150°,或接触角滞后<10°的表面。超疏水概念最初由德国生物学家Barthlott和Neinhuis于1997年基于荷叶表面的自清洁现象提

图8 不同改性方法制备的超疏水PBM
Fig. 8 Super-hydrophobic PBM prepared by different modification methods
注 (A) TiO2/ALG层层自组装技术制备超疏水PBM示意
但超疏水PBM是否具有水蒸气阻隔性能并不是一个简单的问题。前已述及,水蒸气阻隔性能和防水性能对PBM的物理结构和化学构成的要求不同,水蒸气阻隔性能对于PBM的内部结构要求相对较高,但关于超疏水性的表征和润湿机理的研究主要集中于基材的表面性

图9 超疏水表面性能表征及3种经典润湿机理
Fig. 9 Characterization of super-hydrophobic surface and three classical wetting mechanisms
注 (A)接触角滞后性的示意
基于超疏水纸表观上测定的超大接触角(≥150°),人们主观上判定超疏水纸将在防水领域具有极大的应用前景,而对于超疏水纸的评价体系与润湿机理和防水性能的实际应用场景之间在理论依据和工程技术上的差距,却鲜有研究报道。尽管超疏水结构表面的低表面自由能可以提高PBM的表观阻隔液态水的性能,也有利于提高PBM的水蒸气阻隔性能,但超疏水表面的微纳米多重粗糙多孔结构为水蒸气凝结富集成液态水提供了多个微观成核位点,为水蒸气的透过提供了可能的通道,从而对PBM的水蒸气阻隔产生不利的影响。前期的理论研究表
综上所述,PBM的水蒸气阻隔性能有助于提高和改善超疏水纸的超疏水稳定性,如果想要实现超疏水PBM的实际应用,研究PBM的3D网络结构对于表面超疏水性能及其稳定性和材料整体的水蒸气阻隔性能的影响,以期制备良好水蒸气阻隔性能的超疏水PBM很有必要。依托于其他基材(如硅片、金属及金属氧化物、玻璃等)的超疏水表面在防水(液态水和气态水)机理和性能稳定性方面已取得了一些研究成
纸基材料(PBM)在包装领域中的应用拓展和以纸为基材的新技术和新应用的发展,很大程度上取决于天然纤维素纤维亲水属性的调控和PBM阻水性能的改善,而对极性水蒸气分子的阻隔是PBM各项阻隔性能调控中最具挑战性的一项。本课题总结和论述了PBM在单根天然纤维素纤维、3D网络内部结构和表面特征结构等多层级结构的化学构成和物理结构的调控研究进展,从PBM多级结构的角度层层解析了PBM水蒸气阻隔性能的调控策略。到目前为止,PBM水蒸气阻隔性能的研究取得了很大的发展和进步,但仍有许多难题和挑战需要攻克。
PBM作为一种应用属性的材料,在众多领域不但要求其具有良好的水蒸气阻隔性能,还要同时兼顾如可加工性能、表面柔软性、生物相容性、透气性(主要指非极性气体)、机械性能等,因此兼容性和多元化的改性技术将是未来的发展趋势之一;许多改善PBM水蒸气阻隔性能的技术目前仅限于实验室研究,需要基于上下游产业链的结构特点,筛选容易实现放大实验的技术逐步实现产业化;水蒸气阻隔性能会对PBM的尺寸稳定性、超疏水等表面性能产生积极的影响,但具体的影响机制尚不清晰,需要系统性的研究PBM多维结构的构筑机制及其对水蒸气阻隔性能、结构稳定性和表面性能的影响机理;基于石油基聚合物的改性技术使得PBM的水蒸气阻隔性能得到明显提升,但需要对后续的分离回收利用和拓展石油基聚合物的来源加大技术投入;基于生物基聚合物的改性技术在改善PBM水蒸气阻隔性能的提升能力和稳定性等方面仍需要大量的研究工作。
总之,PBM水蒸气阻隔性能的调控是一门涉及材料科学、聚合物化学、纳米技术和机械科学等多学科交叉的技术。基于可持续发展的大趋势,对PBM水蒸气阻隔性能未来的研发重点是开发完全生物质基微纳米多维材料及赋予PBM一定功能性的复合改性技术。
参考文献
张 雪, 张红杰, 程 芸, 等. 纸基包装材料的研究进展、应用现状及展望[J]. 中国造纸, 2020, 39(11): 53-69. [百度学术]
ZHANG X,ZHANG H J,CHENG Y,et al. Paper-based Packaging Materials:Research Progress,Application Status,and Development[J]. China Pulp & Paper, 2020, 39(11): 53-69. [百度学术]
LI Y, SUN Z. Evaluation Research on Green Degree of Green Packaging Materials[J]. IOP Conference Series: Materials Science and Engineering, 2020, 772(1):12090-12095. [百度学术]
BORDENAVE N, GRELIER S, COMA V. Hydrophobization and Antimicrobial Activity of Chitosan and Paper-based Packaging Material[J]. Biomacromolecules, 2010, 11(1): 88-96. [百度学术]
BHARDWAJ S, BHARDWAJ N K, Negi Y S. Effect of Degree of Deacetylation of Chitosan on Its Performance as Surface Application Chemical for Paper-based Packaging[J]. Cellulose, 2020, 27(4): 5337-5352. [百度学术]
HERMAWAN D, LAI T K, JAFARZADEH S, et al. Development of Seaweed-based Bamboo Microcrystalline Cellulose Films Intended for Sustainable Food Packaging Applications[J]. Bioresources, 2019, 14(2): 3389-3410. [百度学术]
盛俊娇. 海藻酸钠及聚乳酸涂覆纸张防油性能的研究[D]. 广州:华南理工大学, 2019. [百度学术]
SHE J J. Greaseproof Property of Paper Coated and Fabricated by Sodium Alginate and Polylactic Acid[D]. Guangzhou: South China University of Technology, 2019. [百度学术]
卢谦和. 造纸原理与工程[M]. 北京: 中国轻工业出版社, 2011: 5-9. [百度学术]
LU Q H. Papermaking Principle and Engineering[M]. Beijing: China Light Industry Press, 2011: 5-9. [百度学术]
EICHHORN S J, YOUNG R J. Deformation Micromechanics of Natural Cellulose Fibre Networks and Composites[J]. Composites Science and Technology, 2003, 63(9): 1225-1230. [百度学术]
Samyn P. Wetting and Hydrophobic Modification of Cellulose Surfaces for Paper Applications[J]. Journal of Materials Science, 2013, 48(19): 6455-6498. [百度学术]
BUNMECHIMMA L, LEEJARKPAI T, RIYAJAN S A. Fabrication and Physical Properties of a Novel Macroporous Poly(vinyl alcohol)/cellulose Fibre Product[J]. Carbohydrate Polymers, 2020, 240: 116215-116228. [百度学术]
KANG R H, KIM D. Thermally Induced Silane Dehydrocoupling: Hydrophobic and Oleophilic Filter Paper Preparation for Water Separation and Removal from Organic Solvents[J]. Materials, 2021, 14(19): 5775-5788. [百度学术]
HOYLAND R W, FIELD R. A Review of the Transudation of Water into Paper, Part 5: The Mechanism of Penetration, and Conclusions[J]. Paper Technology and Industry, 1977, 18: 7-9. [百度学术]
BECHTOLD T, MANIAN A P, OZTURK H B, et al. Ion-interactions as Driving Force in Polysaccharide Assembly[J]. Carbohydrate Polymers, 2013, 93(1): 316-323. [百度学术]
JAGANATHAN S, TAFRESHI H V, POURDEYHIMI B. A Realistic Approach for Modeling Permeability of Fibrous Media: 3D Imaging Coupled with CFD Simulation[J]. Chemical Engineering Science, 2008, 63(1): 244-252. [百度学术]
PERKINS E L, BATHCHELOR W J. Water Interaction in Paper Cellulose Fibres as Investigated by NMR Pulsed Field Gradient[J]. Carbohydrate Polymers, 2012, 87(1): 361-367. [百度学术]
DONG S J, LU K Y, WANG Y H, et al. High-temperature Corrosion of HfSiO4 Environmental Barrier Coatings Exposed to Water Vapor/Oxygen Atmosphere and Molten Calcium Magnesium Aluminosilicate[J]. Corrosion Science, DOI: 10.1016/j.corsci.2021.110081. [百度学术]
SHEPPARD S E, NEWSOME P T. The Sorption of Water Vapor by Cellulose and its Derivatives[J]. Journal of Physical Chemistry, 1931, 33(11): 1817-1835. [百度学术]
PATEL M, PATEL J M, LEMBERGER A P. Water Vapor Permeation of Selected Cellulose Ester Films[J]. Journal of Pharmaceutical Sciences, 2010, 53(3): 286-290. [百度学术]
RAILLARD C, HEQUET V, CLOIREE P L, et al. Kinetic Study of Ketones Photocatalytic Oxidation in Gas Phase Using TiO2-containing Paper: Effect of Water Vapor[J]. Journal of Photochemistry & Photobiology A Chemistry, 2004, 163(3): 425-431. [百度学术]
段业睿, 沈一丁, 李小瑞, 等. 封闭型水性聚氨酯合成及在纸张表面施胶中的应用[J]. 中国造纸, 2021, 40(12): 31-38. [百度学术]
DUAN Y R, SHEN Y D, LI X R, et al. Synthesis of Closed Waterborne Polyurethane and Its Application in Paper Surface Sizing[J]. China Pulp & Paper, 2021, 40(12): 31-38. [百度学术]
HUBBE M, MCLEAN D, STACK K, et al. Self-assembly of Alkyl Chains of Fatty Acids in Papermaking Systems: A Review of Related Pitch Issues, Hydrophobic Sizing, and pH Effects[J]. Bioresources, 2020, 15(2): 4591-4635. [百度学术]
JIANG Z, NGAI T. Recent Advances in Chemically Modified Cellulose and Its Derivatives for Food Packaging Applications: A Review [J]. Polymers, 2022, 14: 1533-1563. [百度学术]
IBRAHIM M M, MOBARAK F, El-DIN E I S, et al. Modified egyptian talc as internal sizing agent for papermaking[J]. Carbohydrate Polymers, 2009, 75(1):130-134. [百度学术]
PAQUET O, KROUIT M, BRAS J, et al. Surface Modification of Cellulose by PCL Grafts[J]. Acta Materialia, 2010, 58(3): 792-801. [百度学术]
GUSTAFSSON E, LARSSON P A, WAGBERG L. Treatment of Cellulose Fibres with Polyelectrolytes and Wax Colloids to Create Tailored Highly Hydrophobic Fibrous Networks[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2012, 414: 415-421. [百度学术]
LU P, ZHANG W, HE M, et al. Cellulase-assisted Refining of Bleached Softwood Kraft Pulp for Making Water Vapor Barrier and Grease-resistant Paper[J]. Cellulose, 2015, 23(1): 891-900. [百度学术]
ZAMPANO G, BERTOLDO M, BRONCO S. Poly(ethyl acrylate) Surface-initiated ATRP Grafting from Wood Pulp Cellulose Fibers[J]. Carbohydrate Polymers, 2009, 75(1): 22-31. [百度学术]
DAS S, GAGANDEEP, BHATIA R. Paper-based Microfluidic Devices: Fabrication, Detection, and Significant Applications in Various Fields[J]. Reviews in Analytical Chemistry, 2022, 41(1): 112-136. [百度学术]
SABZALIAN Z, ALAM M N, VAN DE VEN T G M. Hydrophobization and Characterization of Internally Crosslink-reinforced Cellulose Fibers[J]. Cellulose, 2014, 21(3): 1381-1393. [百度学术]
BRAS J, VACA G C, BORREDON M E, et al. Oxygen and Water Vapor Permeability of Fully Substituted Long Chain Cellulose Esters (LCCE) [J]. Cellulose, 2007, 14(4): 367-374. [百度学术]
BEDANE A H, XIAO H, EIC M, et al. Structural and Thermodynamic Characterization of Modified Cellulose Fiber-based Materials and Related Interactions with Water Vapor[J]. Applied Surface Science, 2015, 351: 725-737. [百度学术]
RODIONOVA G, LENES M, ERIKSEN Y, et al. Surface Chemical Modification of Microfibrillated Cellulose: Improvement of Barrier Properties for Packaging Applications [J]. Cellulose, 2010, 18(1): 127-134. [百度学术]
KHALIL H, ADNAN A S, YAHYA E B, et al. A Review on Plant Cellulose Nanofibre-based Aerogels for Biomedical Applications[J]. Polymers, 2020, 12(8): 1759-1785. [百度学术]
SHANMUGAM K, ANG S, MALIHA M, et al. High-performance Homogenized and Spray Coated Nanofibrillated Cellulose-Montmorillonite Barriers[J]. Cellulose, 2021, 28(1): 405-416. [百度学术]
HO T, ZIMMERMANN T, OHR S, et al. Composites of Cationic Nanofibrillated Cellulose and Layered Silicates: Water Vapor Barrier and Mechanical Properties[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4832-4840. [百度学术]
HU Z, ZEN Z, GONG J, et al. Water Resistance Improvement of Paper by Superhydrophobic Modification with Microsized CaCO3 and Fatty Acid Coating[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 351(3): 65-70. [百度学术]
LAROTONDA F, MATSUI K N, SOBRAL P, et al. Hygroscopicity and Water Vapor Permeability of Kraft Paper Impregnated with Starch Acetate[J]. Journal of Food Engineering, 2005, 71(4): 394-402. [百度学术]
Sothornvit R. Effect of Hydroxypropyl Methylcellulose and Lipid on Mechanical Properties and Water Vapor Permeability of Coated Paper[J]. Food Research International, 2009, 42(2): 307-311. [百度学术]
LABET M, THIELEMANS W. Synthesis of polycaprolactone: A review[J]. Chemical Society Reviews, 2009, 38(12):3484-3504. [百度学术]
刘晓菲, 张 雪, 程 芸, 等. 多糖聚合物涂层对纸基包装材料水蒸气阻隔性能的研究进展[J]. 中国造纸学报, 2021, 36(4): 76-84. [百度学术]
LIU X F, ZHANG X, CHENG Y, et al. Research Progress on the Water Vapor Barrier Properties of Paper-based Packaging Materials Coated by Polysaccharide Polymers[J]. Transactions of China Pulp and Paper, 2021, 36(4): 76-84. [百度学术]
DU P, DING Q J, ZHAO C S, et al. The Fluorine-free Coating has Excellent Hydrophobic and Oleophobic Properties for Porous Cellulose-based Materials[J]. Cellulose, 2021, 28(10): 6133-6146. [百度学术]
ZHANG J K, GUO Z W, CHEN S, et al. High-barrier, Strong, and Antibacterial Paper Fabricated by Coating Acetylated Cellulose and Cinnamaldehyde for Food Packaging[J]. Cellulose, 2021, 28(7): 4371-4384. [百度学术]
KHWALDIA K, BASTA A H, ALOUI H, et al. Chitosan-caseinate Bilayer Coatings for Paper Packaging Materials[J]. Carbohydrate Polymers, 2014, 99: 508-516. [百度学术]
QIN C, WANG W, LI W, et al. Reactive Water Vapor Barrier Coatings Derived from Cellulose Undecenoyl Esters for Paper Packaging[J]. Coatings, 2020, 10(11): 1032-1046. [百度学术]
WANG W, QIN C R, LI W, et al. Improving Moisture Barrier Properties of Paper Sheets by Cellulose Stearoyl Ester-based Coatings[J]. Carbohydrate Polymers, 2020, 235: 115924-115931. [百度学术]
CHRISTOPHLIEMK H, ULLSTEN H, JOHANSSON C, et al. Starch-poly(vinyl alcohol) Barrier Coatings for Flexible Packaging Paper and Their Effects of Phase Interactions[J]. Progress in Organic Coatings, 2017, 111: 13-22. [百度学术]
SHEN Z, RAJABI-ABHARI A, OH K, et al. Improving the Barrier Properties of Packaging Paper by Polyvinyl Alcohol Based Polymer Coating—Effect of the Base Paper and Nanoclay[J]. Polymers, 2021, 13(8): 1334-1346. [百度学术]
FARMAHINI-FARAHANI M, XIAO H, KHAN A, et al. Preparation and Characterization of Exfoliated PHBV Nanocomposites to Enhance Water Vapor Barriers of Calendared Paper[J]. Industrial & Engineering Chemistry Research, 2015, 54(45): 11277-11284. [百度学术]
WANG W X, GU F, DENG Z F, et al. Multilayer Surface Construction for Enhancing Barrier Properties of Cellulose-based Packaging[J]. Carbohydrate Polymers, DOI: 10.1016/j.carbpol.2020.117431. [百度学术]
HERRERA M A, MATHEW A P, OKSMAN K. Barrier and Mechanical Properties of Plasticized and Cross-linked Nanocellulose Coatings for Paper Packaging Applications[J]. Cellulose, 2017, 24(9): 3969-3980. [百度学术]
TIAN X W, WU M, WANG Z W, et al. A High-stable Soybean-oil-based Epoxy Acrylate Emulsion Stabilized by Silanized Nanocrystalline Cellulose as a Sustainable Paper Coating for Enhanced Water Vapor Barrier [J]. Journal of Colloid and Interface Science, 2022, 610: 1043-1056. [百度学术]
CAIRNS M J, MESIC B, JOHNSTON J H, et al. Use of Spherical Silica Particles to Improve the Barrier Performance of Coated Paper[J]. Nordic Pulp & Paper Research Journal, 2019, 34(3): 334-342. [百度学术]
MIRVAKILI M N, HAO V B, OMMEN J, et al. Enhanced Barrier Performance of Engineered Paper by Atomic Layer Deposited Al2O3 Thin Films[J]. ACS Applied Materials & Interfaces, 2016, 8(21):13590-13600. [百度学术]
KHANJANI P, KING A W T, PARTL G J, et al. Superhydrophobic Paper from Nanostructured Fluorinated Cellulose Esters[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 11280-11288. [百度学术]
PENG L C, MENG Y H, LI H. Facile Fabrication of Superhydrophobic Paper with Improved Physical Strength by a Novel Layer-by-layer Assembly of Polyelectrolytes and Lignosulfonates-amine[J]. Cellulose, 2016, 23(3): 2073-2085. [百度学术]
李素静. 超疏水纤维素纳米材料的制备和性质研究[D]. 杭州:浙江大学,2010. [百度学术]
LI S J. Fabrication and Properties of Superhydrophobic Cellulosic Materials through Nanocoating Approach[D]. Hangzhou: Zhejiang University, 2010. [百度学术]
CHEN G, ZHU P, KUANG Y, et al. Durable Superhydrophobic Paper Enabled by Surface Sizing of Starch-based Composite Films[J]. Applied Surface Science, 2017, 409: 45-51. [百度学术]
NYSTROM D, LINDQVIST J, OSTMARK E, et al. Superhydrophobic Bio-fibre Surfaces via Tailored Grafting Architecture[J]. Chemical Communications, 2006(34): 3594-3596. [百度学术]
NEINHUIS W B. Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces[J]. Planta, 1997, 202(1): 1-8. [百度学术]
WANG T, HUANG L, LIU Y, et al. Robust Biomimetic Hierarchical Diamond Architecture with a Self-cleaning, Antibacterial, and Antibiofouling Surface[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24432-24441. [百度学术]
ZHANG B B, ZHU Q J, LI Y T, et al. Facile Fluorine-free one Step Fabrication of Superhydrophobic Aluminum Surface towards Self-cleaning and Marine Anticorrosion[J]. Chemical Engineering Journal, 2018, 352: 625-633. [百度学术]
JEEVAHAN J, CHANDRASEKARAN M, JOSEPH G B, et al. Superhydrophobic Surfaces: A Review on Fundamentals, Applications, and Challenges[J]. Journal of Coatings Technology and Research, 2018, 15(2): 231-250. [百度学术]
JIANG L, TANG Z G, CLINTON R M, et al. Two-step Process to Create "Roll-off" Superamphiphobic Paper Surfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 9195-9203. [百度学术]
ZHANG X, BATCHELOR W, SHEN W. Building Dual-scale Roughness Using Inorganic Pigments for Fabrication of Super-hydrophobic Paper[J]. Industrial & Engineering Chemistry Research, 2017, 56(13): 3618-3628. [百度学术]
ZHANG F, WAGN C, WANG X Y, et al. Fabrication of Superhydrophobic and Iyophobic Paper for Self-cleaning, Moisture-proof and Antibacterial Activity [J]. Applied Surface Science, DOI: 10.1016/j.apsusc.2022.153639. [百度学术]
LI H, YANG J, LI P, et al. A Facile Method for Preparation Superhydrophobic Paper with Enhanced Physical Strength and Moisture-proofing Property[J]. Carbohydrate Polymers, 2017, 160: 9-17. [百度学术]
WANG Z W, YI M, ZHANG Z Y, et al. Fabrication of Highly Water-repelling Paper by Surface Coating with Stearic Acid Modified Calcium Carbonate Particles and Reactive Biopolymers [J]. Journal of Bioresources and Bioproducts, 2017, 2(2): 89-92. [百度学术]
GAO Z X, ZHAI X L, LIU F, et al. Fabrication of TiO2/EP Super-hydrophobic Thin Film on Filter Paper Surface [J]. Carbohydrate Polymers, 2015, 128: 24-31. [百度学术]
Balu B, Kim J S, Breedveld V, et al. Contact Angle, Wettability, and Adhesion[M]. Netherlands: Koninklijke Brill NV, 2009: 235-250. [百度学术]
GUO H Z, FUCHS P, CASDORFF K, et al. Bio-inspired Superhydrophobic and Omniphobic Wood Surfaces[J]. Advanced Materials Interfaces, 2016, 4(1): 1600289-1600295. [百度学术]
YOUNG T. An Essay on the Cohesion of Fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. [百度学术]
WENZEL R N. Resistance of Solid Surfaces to Wetting by Water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. [百度学术]
CASSIE, A B D, BAXTER S. Wettability of Porous Surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. [百度学术]
ÖNER D, MCCARTHY T J. Ultrahydrophobic Surfaces. Effects of Topograp Length Scales on Wettability[J]. Langmuir, 2000, 16(20): 7777-7782. [百度学术]
吕田. 超疏水表面润湿性与流动减阻机理研究[D].上海:上海交通大学, 2009. [百度学术]
LYU T. Mechanism Study about the Wettability and Flow Drag Reduction on Superhydrophobic Surface[D]. Shanghai: Shanghai Jiao Tong University, 2009. [百度学术]
靖雪山, 辛 燕. 仿生超疏水材料耐受性研究进展[J]. 胶体与聚合物, 2022, 40(1): 34-44. [百度学术]
JING X S, XIN Y. Recent Development of Biomimetic Superhydrophobic Materials with Mechanical Durability and Chemical Stability[J]. Chinese Journal of Colloid & Polymer, 2022, 40(1): 34-44. [百度学术]
OGIHARA H, JING X, OKAGAKI J, et al. Simple Method for Preparing Superhydrophobic Paper: Spray-deposited Hydrophobic Silica Nanoparticle Coatings Exhibit High Water-repellency and Transparency[J]. Langmuir, 2012, 28(10): 4605-4608. [百度学术]
WU H, WU L H, LU S C, et al. Robust Superhydrophobic and Superoleophilic Filter Paper via Atom Transfer Radical Polymerization for Oil/Water Separation[J]. Carbohydrate Polymers, 2018, 181: 419-425. [百度学术]
JIANG S, ZHOU S, DU B. A Method for Preparing Superhydrophobic Paper with High Stability and Ionic Liquid-induced Wettability Transition[J]. Materials, 2021, 14(16): 4638-4655. [百度学术]
RHIM J W, HONG S I, HA C S. Tensile, Water Vapor Barrier and Antimicrobial Properties of PLA/Nanoclay Composite Films[J]. Food Science and Technology, 2009, 42(2): 612-617. [百度学术]
DU B, XUE D, LUO R, et al. Preparation of Fluorine-free Superhydrophobic Paper with Dual-response of Temperature and pH[J]. Coatings, 2020, 10(12): 1167-1183. [百度学术]
XU H, YE Q, CHEN N, et al. Designing and Exploring a Brand-new Strong Superhydrophobic-conductive Polyaniline-polysiloxane Composite Anti-corrosion Coating[J]. Chemistry Letters, 2021, 50(2): 260-264. [百度学术]
CHEN F J, XIANG W, YIN S H, et al. Magnetically Responsive Superhydrophobic Surface with Switchable Adhesivity Based on Electrostatic Air Spray Deposition[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20885-20896. CPP [百度学术]