摘要
通过湿法成形制备了超细纤维在厚度方向呈梯度分布的复合空气过滤材料,并分析了滤材对不同粒径的NaCl颗粒的过滤效率及对纯A2灰、纯癸二酸二异辛(DEHS)和不同DEHS含量的DEHS-A2灰混合尘的容尘量。结果表明,滤材最易穿透粒径为100 nm,对纯A2灰及纯DEHS的容尘量分别为92.0 g/
纤维过滤材料是空气中颗粒物净化装置的关键材料。过滤效率高、阻力低、使用寿命长是优质滤材研制的永恒标
具有梯度结构的超细纤维复合空气滤材由于其出色的灰尘颗粒容尘量受到了广泛关
具有梯度结构的超细纤维复合空气滤材制备在中试生产线上利用多层成形斜网技术实现,流程如

图1 滤材制备流程示意图
Fig. 1 Schematic diagram of filter material preparation process
对滤材的入流面、出流面及截面形貌结构进行表征。滤材的过滤性能进行研究前先对其定量进行测定,随后使用手持式厚度仪(型号YG142,宁波纺织仪器厂)按照标准GB/T 3820—1997对其厚度进行测量。使用透气度仪(型号FX 3300-Ⅳ,Textest公司,瑞士)测试滤材透气度。使用毛细管流动孔隙度仪(型号CFP 1100,Porous Material公司,美国)测试滤材的孔径分布。使用耐破度仪(型号Mullen Testers CE 180,L&W公司,美国)测试滤材耐破度。滤材的形貌结构使用扫描电子显微镜(SEM,型号G2Pro Y,Phenom-world公司,荷兰)观察分析。
为了探究滤材的最易穿透粒径(过滤效率最低时对应的颗粒粒径),在面流速5 cm/s的条件下,测试分析滤材对粒径20、50、80、100、200、300、500 nm的NaCl颗粒的过滤效率。测试系统设置如

图2 滤材性能测试系统示意图
Fig. 2 Schematic diagram of test system for filter material
(1) |
式中,Cdown为滤材下游颗粒物数量,Cup为滤材上游颗粒物数量。
滤材对DEHS-A2灰混合尘的容尘性能测试系统如
(2) |
式中,M1为容尘测试结束后滤材的质量,g;M0为洁净滤材的质量,g;A为有效过滤面积,100 c
滤材的基本性能包括定量、透气度、耐破度,测试结果如

图3 滤材SEM图及孔径分布
Fig. 3 SEM images and pore size distribution of filter material
滤材对不同单一粒径的立方体状NaCl颗粒过滤效率如

图4 滤材对不同粒径的NaCl颗粒的过滤效率
Fig. 4 Filtration efficiency of filter material against NaCl particles with different size
滤材对纯A2灰、纯DEHS及不同DEHS含量的DEHS-A2混合尘的容尘量(DHC)测试结果如

图5 滤材对不同DEHS含量混合尘的DHC
Fig. 5 DHC of filter material against mixture dust with different DEHS content

图6 滤材对不同DEHS含量的混合尘容尘过程中的压差变化曲线
Fig. 6 Pressure drop transition curves of filter material holded with mixture dust with different DEHS content.
滤材容尘测试后,颗粒物形成的滤饼及在滤材中的分布情况如

图7 不同DEHS含量的混合尘在滤材中的分布SEM图
Fig. 7 SEM images of distribution of mixture dust with different DEHS content in the filter material
本研究制备了具有梯度结构的超细纤维复合空气过滤材料,探究了其过滤效率及对纯A2灰、纯癸二酸二异辛(DEHS)和DEHS-A2灰混合尘的容尘性能。
3.1 与目前常用商业化熔喷纤维双层复合滤材相比,相同条件下,具有梯度结构的超细纤维复合空气滤材在含油污环境中具有较大的容尘量,更长的使用寿命。
3.2 混合尘中含有少量的油性液滴DEHS会增加滤材使用寿命。与纯A2灰相比,混合尘中含有20%DEHS会使滤材容尘量由92.0 g/
3.3 当混合尘中DEHS含量大于20%时,滤材容尘量随着DEHS含量的增加而降低,当DEHS含量为60%时,滤材容尘量最低(84.1 g/
3.4 随着DEHS含量的增加,混合尘的流动性增加,穿透进入滤材内部的颗粒物增加。
参 考 文 献
Hutten I M. Handbook of Nonwoven Filter Media[M]. Amsterdam: Elsevier, 2007. [百度学术]
CAO L L, TANG L S, LI Q, et al. Effects of ZnCl2/H2O/C2H5OH Treatment on the Filter Paper Performance[J]. Paper and Biomaterials, 2019, 4(3): 15-22. [百度学术]
DU Q, WANG N, LIU W, et al. Preparation of Electrospun PVDF Nanofiber Composite Filter Medium and Its Application in Air Filtration [J]. Paper and Biomaterials, 2019,4(1): 23-30. [百度学术]
梁云,于天,胡健.原纤化Tencel纤维对滤纸性能的影响[J].中国造纸学报, 2010, 25(4): 47-51. [百度学术]
LIANG Y, YU T, HU J.Influence of Fibrillated Tencel Fiber on the Performance of Filter Media[J]. Transaction of China Pulp and Paper, 2010, 25(4): 47-51. [百度学术]
胥绍华.天然纳米纤维在空气过滤材料中的应用[J].中国造纸,2011,30(6):75-76. [百度学术]
XU S H. Application of Natural Nanofibers in Air Filtration Materials [J]. China Pulp & Paper, 2011,30(6):75-76. [百度学术]
余娇,王迪,孙召霞,等.微纳米纤维复合滤纸的过滤性能研究[J].中国造纸,2021, 40(3):27-34. [百度学术]
YU J, WANG D, SUN Z X, et al. Study on Filtration Performance of Micro/Nano Fiber Composite Filter Paper[J]. China Pulp & Paper, 2021, 40(3):27-34. [百度学术]
TUOMAS VALMARI , MATTI LEHTIMÄKI , AIMO TAIPALE . Filter Clogging by Bimodal Aerosol[J]. Aerosol Science and Technology, 2006, 40(4): 255-260. [百度学术]
ENDO Y, CHEN D R, PUI D Y. Effects of particle polydispersity and shape factor during dust cake loading on air filters[J]. Powder Technology, 1998, 98(3): 241-249. [百度学术]
ENDO Y, CHEN D R, PUI D Y. Bimodal aerosol loading and dust cake formation on air filters[J]. Filtration & Separation, 1998, 35(2): 191-195. [百度学术]
FRISING T, GUJISAITE V, THOMAS D, et al. Filtration of solid and liquid aerosol mixtures: Pressure drop evolution and influence of solid/liquid ratio[J]. Filtration & Separation, 2004, 41(2): 37-39. [百度学术]
ZHANG X Y, WANG J Z, WANG Y Q, et al. Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors[J]. Atmospheric Chemistry and Physics, 2015, 15(22): 12935-12952. [百度学术]
ZAPPOLI S, ANDRACCHIO A, FUZZI S, et al. Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility[J]. Atmospheric Environment, 1999, 33(17): 2733-2743. [百度学术]
SCHWARZ J, CUSACK M, KARBAN J, et al. PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis[J]. Atmospheric Research, 2016, 176+177: 108-120. [百度学术]
LONG J, TANG M, SUN Z X, et al. Dust Loading Performance of a Novel Submicro-fiber Composite Filter Medium for Engine[J]. Materials, DOI:10.3390/ma11102038. [百度学术]
HINDS W C. Aerosol Technology[M]. New York, Wiley & Sons :1999. [百度学术]
宋强,梁云,曾靖山,等.油性液滴和A2灰混合物对空气过滤材料容尘性能的影响[J].造纸科学与技术,2017,36(6):13-16. [百度学术]
SONG Q, LIANG Y, ZENG J S, et al. Effect of oily droplet and A2 ash mixture on dust tolerance of air filter material [J]. Paper Science & Technology, 2017, 36(6): 13-16. [百度学术]
BROWN R C. Air filtrationan integrated approach to the theory and applications of fibrous filters[M].Oxford, Pergamon: 1993. [百度学术]
KAMPA D, WURSTER S, BUZENGEIGER J, et al. Pressure drop and liquid transport through coalescence filter media used for oil mist filtration[J]. International Journal of Multiphase Flow, 2014, 58: 313-324. [百度学术]
HSIAO T C, CHEN D R. Experimental observations of the transition pressure drop characteristics of fibrous filters loaded with oil-coated particles[J]. Separation and Purification Technology, 2015, 149: 47-54. CPP [百度学术]