摘要
本研究利用竹纤维素构建导电凝胶的网络骨架,通过添加离子液体形成复合竹纤维素离子凝胶(CCIGel),并引入金属盐离子强化纤维素离子凝胶的性能。结果表明,ZnCl2、CaCl2和FeCl3可激发纤维素-离子液体凝胶的成形,且CCIGel-Zn和CCIGel-Ca的机械性能均优于CCIGel-None;添加AlCl3的体系无法形成凝胶。其中质量分数15%的ZnCl2制备的CCIGel-Zn性能最为优异,其拉伸强度、韧性和离子电导率分别高达1.344 MPa、29.85 MJ/
当前世界已经进入第四次工业革命时代,伴随着“物联网”体系的快速发展,电子设备作为该体系的核心要素已取得飞速进步,并朝着柔性化、轻质化、多功能化方向发展。柔性电子成为世界各国的热点研究领域,柔性导电材料也成为热点研究方
目前,导电离子凝胶的聚合物主要为石油基高分子,包括聚乙烯醇、聚偏二氟乙烯、聚丙烯酰胺及聚丙烯酸
本研究以竹溶解浆作为纤维素材料,并引入离子液体初步构建纤维素离子凝
竹溶解浆,福建省青山纸业股份有限公司;[AMIM]Cl型离子液体(ILs,纯度>98%),兰州雨陆精细化工有限公司;氯化锌(ZnCl2,纯度98%)、氯化钙(CaCl2,纯度96%)、氯化铁(FeCl3,纯度99%),上海麦克林生化科技有限公司;氯化铝(AlCl3,纯度99%),上海阿拉丁生化科技有限公司。
称取10 g [AMIM]Cl型离子液体置于三口烧瓶中,称取0.6 g竹溶解浆缓慢加入到ILs中,再分别加入0、10%、15%、20%和40%的ZnCl2(用量相对绝干竹浆),且以同样的梯度添加CaCl2、FeCl3、AlCl3做对比实验,在85℃油浴锅中加热搅拌30 min,然后静置除气泡并倒入模具中,在空气氛围中制备得到复合纤维素离子凝胶,根据金属盐离子种类分别记为CCIGel-None、CCIGel-Zn、CCIGel-Ca、CCIGel-Fe以及CCIGel-Al。
纤维素分子链中含有大量的分子间和分子内氢键。离子液体中的阴、阳离子可以破坏纤维素分子链中原有的氢键,从而实现纤维素的溶解。此外,体系中的离子液体和金属盐离子具有较强的吸水性,使纤维素-离子液体混合溶液吸收一定量的水分子,最终构建复合纤维素离子凝胶(CCIGel),制备流程如

图1 CCIGel的制备流程及样品
Fig. 1 Preparation process and samples of CCIGel
进一步检测复合材料的流变性能,结果如

图2 CCIGel的流变性能
Fig. 2 Rheological properties of CCIGel
注 金属盐离子质量分数为15%。

图3 CCIGel的弯曲、扭结及拉伸性能测试过程
Fig. 3 Bending, kinking and tensile process of CCIGel

图4 CCIGel-Zn、CCIGel-Ca、CCIGel-Fe的应力-应变曲线及其拉伸强度
Fig. 4 Stress-strain curves and the tensile strength of CCIGel-Zn, CCIGel-Ca, CCIGel-Fe
除了优异的机械性能,CCIGel也展示出良好的光学性能(见

图5 CCIGel-None和CCIGel-Zn、CCIGel-Ca、CCIGel-Fe的透光率及光学性能
Fig. 5 Transmittance and optical properties of CCIGel-None and CCIGel-Zn, CCIGel-Ca, CCIGel-Fe
注 金属盐离子质量分数为15%。
复合纤维素离子凝胶体系中存在游离的离子(例如C

图6 CCIGel的导电性能及不同盐的CCIGel离子电导率
Fig. 6 Conductivity of CCIGel and ionic conductivity of CCIGel with different salts
本研究基于纤维素、离子液体与金属盐离子之间的多重氢键作用和配位作用,构建了柔性透明竹纤维素离子液体复合凝胶(CCIGel)。
3.1 材料流变性能的测试结果表明,CCIGel-Zn、CCIGel-Ca、CCIGel-Fe的损失模量(G')均大于储存模量(G''),是凝胶的重要表征。
3.2 机械性能测试结果表明,CCIGel-Zn和CCIGel-Ca的拉伸强度和韧性优于CCIGel-None,而CCIGel-Fe的性能弱于CCIGel-None。其中ZnCl2和CaCl2的最佳添加量分别为相对于纤维素质量的15%和20%,且质量分数15%的ZnCl2制备的CCIGel-Zn比质量分数20%的CCIGel-Ca具有更高的机械性能,质量分数15%的ZnCl2制备的CCIGel-Zn的拉伸强度和韧性分别为1.344 MPa和29.85 MJ/
3.3 凝胶透光性检测结果表明,CCIGel-Zn、CCIGel-Ca透光率相近,高达86%。离子电导率的测试结果显示,质量分数15%的CCIGel-Zn的离子电导率为47.1 mS/cm,高于CCIGel-None的36.7 mS/cm。
参 考 文 献
刘款款. 纤维素基离子凝胶的制备及其在柔性热电中的应用研究[D]. 上海: 东华大学, 2021. [百度学术]
LIU K K. Preparation of Cellulose-based Ionogels and Their Applications as Flexible Thermoelectric Materials [D]. Shanghai: Donghua University, 2021. [百度学术]
WANG D, REN S Y, CHEN J Y, et al. Healable, Highly Thermal Conductive, Flexible Polymer Composite with Excellent Mechanical Properties and Multiple Functionalities[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2021.133163. [百度学术]
杨润苗, 董观秀, 赵德建, 等. 基于偶氮苯的超分子凝胶材料的研究进展[J]. 化工进展, 2015, 34(6): 1661-1671. [百度学术]
YANG R M, DONG G X, ZHAO D J, et al. Progress in Supramolecular Gels Based on Azobenzene[J]. Chemical Industry and Engineering Progress, 2015, 34(6): 1661-1671. [百度学术]
CUI C, FU Q J, MENG L, et al. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures and Performance[J]. ACS Applied Bio Materials, 2020, 4(1): 85-121. [百度学术]
刘 壮, 谢 锐, 巨晓洁, 等. 具有快速响应特性的环境响应型智能水凝胶的研究进展[J]. 化工学报, 2016, 67(1): 202-208. [百度学术]
LIU Z, XIE R, JU X J, et al. Progress in Stimuli-responsive Smart Hydrogels with Rapid Responsive Characteristics[J]. CIESC Journal, 2016, 67(1): 202-208. [百度学术]
佘小红, 杜娟, 朱雯莉, 等. 高强度聚苯胺-聚丙烯酸/聚丙烯酰胺导电水凝胶的制备与性能[J]. 复合材料学报, 2021, 38(4): 1223-1230. [百度学术]
SHE X H, DU J, ZHU W L, et al. Preparation and Properties of Strong Polyaniline-polyacrylic Acid/Polyacrylamide Conductive Hydrogel[J]. Acta Materiae Compositae Sinica, 2021, 38 (4): 1223-1230. [百度学术]
路 洁, 李明星, 周奕杨, 等. 纳米纤维素的制备及其在水凝胶领域的应用研究进展[J]. 中国造纸, 2021, 40(11): 107-117. [百度学术]
LU J, LI M X, ZHOU Y Y, et al Research Advances in the Preparation of Nanocellulose and Its Applications in the Field of Hydrogels[J]. China Pulp & Paper, 2021, 40(11): 107-117. [百度学术]
GUO Z H, MA T, FU S Y. Preparation of Photo-thermal Cellulose Nanocrystal-based Hydrogel[J]. Paper and Biomaterials, 2019, 4(2): 32-39. [百度学术]
YU J, FENG Y F, SUN D, et al. Highly Conductive and Mechanically Robust Cellulose Nanocomposite Hydrogels with Antifreezing and Antidehydration Performances for Flexible Humidity Sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10886-10897. [百度学术]
WU H B, ZHANG B, LIU S H, et al. Flammability Estimation of 1-hexyl-3-methylimidazolium Bis (Trifluoromethylsulfonyl) Imide[J]. Journal of Loss Prevention in the Process Industries, DOI: 10.1016/j.jlp.2020.104196. [百度学术]
HICKEY R J, PELLING A E. Cellulose Biomaterials for Tissue Engineering[J]. Frontiers in Bioengineering and Biotechnology, DOI:10.3389/fbioe.2019.00045. [百度学术]
WANG Y L, LI B, SARMAN S, et al. Microstructural and Dynamical Heterogeneities in Ionic Liquids[J]. Chemical Reviews, 2020, 120(13): 5798-5877. [百度学术]
SUN C Y, HOU C Y, ZHANG H, et al. Ultra-stretchable, Self-adhesive, Transparent, and Ionic Conductive Organohydrogel for Flexible Sensor[J]. APL Materials, DOI: 10.1063/5.0035996. [百度学术]
LAI J L, ZHOU H W, JIN Z Y, et al. Highly Stretchable, Fatigue-resistant, Electrically Conductive, and Temperature-tolerant Ionogels for High-performance Flexible Sensors[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26412-26420. [百度学术]
陈裙凤, 刘 茜, 杨嘉玮, 等. 纤维素离子凝胶的制备及性能[J]. 复合材料学报,2021,38(12):4247-4254. [百度学术]
CHEN Q F, LIU X, YANG J W, et al. Preparation and Properties of Cellulose Ionic Gel [J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4247-4254. [百度学术]
CHEN Q F, LIU Y, TAO T, et al. Sustainable, Superfast Deconstruction of Natural Cellulosic Aggregates Toward Intrinsically Green, Multifunctional Gel[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2022.134856. [百度学术]
WANG S, LU A, ZHANG L, et al. Recent Advances in Regenerated Cellulose Materials[J]. Progress in Polymer Science, 2016, 53: 169-206. [百度学术]
王思恒, 杨欣欣, 刘 鹤, 等. 导电水凝胶的制备及应用研究进展[J]. 化工进展, 2020, 40(5): 2646-2664. [百度学术]
WANG S H, YANG X X, LIU H, et al. Research Progress in Preparation and Application of Conductive Hydrogels[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2646-2664. [百度学术]
徐永建, 王 皎. 离子液体在制浆造纸及纤维素工业的应用[J]. 中国造纸, 2011, 30(6): 58-63. [百度学术]
XU Y J, WANG J. Application of Ionic Liquids in Pulp and Paper and the Cellulose Industries [J]. China Pulp & Paper, 2011, 30(6): 58-63. [百度学术]
KIM S H, JUNG S G, YOON I S, et al. Ultrastretchable Conductor Fabricated on Skin‐like Hydrogel-elastomer Hybrid Substrates for Skin Electronics[J]. Advanced Materials, DOI: 10.1002/adma.201800109. [百度学术]
KOOK G, JEONG S H, KIM M K, et al. Fabrication of Highly Dense Silk Fibroin Biomemristor Array and Its Resistive Switching Characteristics[J]. Advanced Materials Technologies, DOI: 10.1002/admt.201900991. [百度学术]
PAN S W, ZHANG F L, CAI P Q, et al. Mechanically Interlocked Hydrogel-elastomer Hybrids for On-skin Electronics[J]. Advanced Functional Materials, DOI: 10.1002/adfm.201909540. [百度学术]
DAUTTA M, ALSHETAIWI M, ESCOBAR A, et al. Multi-functional Hydrogel-interlayer RF/NFC Resonators as a Versatile Platform for Passive and Wireless Biosensing[J]. Advanced Electronic Materials, DOI: 10.1002/aelm.201901311. [百度学术]
DING H Y, XIN Z Q, YANG Y Y, et al. Ultrasensitive, Low-voltage Operational, and Asymmetric Ionic Sensing Hydrogel for Multipurpose Applications[J]. Advanced Functional Materials, doi.10.1002/adfm.201909616. [百度学术]
KHAZAELI A, GODBILLE-CARDONA G, BARZ D P J, et al. A Novel Flexible Hybrid Battery-supercapacitor Based on a Self-assembled Vanadium-graphene Hydrogel[J]. Advanced Functional Materials, DOI: 10.1002/adfm.201910738. [百度学术]
LIU Y D, LU N, LIU F Y, et al. Highly Strong and Tough Double‐crosslinked Hydrogel Electrolyte for Flexible Supercapacitors[J]. Chem Electro Chem, 2020, 7(4): 1007-1015. CPP [百度学术]