摘要
纳米纤维素机械强度高、密度低且表面含有可化学改性的羟基官能团,可作为组装高性能超级电容器电极的优选材料。本文综述了纳米纤维素与导电聚合物、过渡金属氧化物等活性材料制备超级电容器软材料和碳基复合电极的机理,对冷冻干燥、碳化、原位聚合、过滤、涂覆等组装方法进行了详细讨论,并对纳米纤维素基电极的机械性能和电化学性能进行了对比和分析。最后,对纳米纤维素基电极在超级电容器中的应用前景进行了展望。
超级电容,又名电化学电容,是从20世纪七八十年代发展起来的通过极化电解质来储能的一种电化学元件。它既具有电容器快速充放电的特性,同时又具有电池的储能特

图1 超级电容器结构图和不同储能系统Ragone图
Fig. 1 Structure diagram of supercapacitor and Ragone diagram of different energy storage systems
按照电荷存储机制的不同可将超级电容器分为:电双层超级电容器、赝电容器(又称法拉第电容器)和混合电容器。其中,电双层超级电容器电荷存放主要依赖于电极和电解质介面的电荷分离;赝电容的电荷存放则依赖于快速、可逆的氧化还原反应;而混合电容器中同时存在上述两种电荷存
电极是超级电容器生产的关键材料之一,直接决定了超级电容器的主要性能指标(如电容、能量密度、功率密度和循环稳定性等
由于纳米纤维素兼具了天然纤维素所具备的无毒可再生,以及纳米材料的密度低、比表面积高、机械性能强等特征,纳米纤维素基电极的相关研究逐渐吸引了众多研究者的注
纳米纤维素机械强度高、密度低且表面含有可化学改
水凝胶作为软材料,可由水溶性聚合物通过物理或化学交联制
在纳米纤维素水凝胶中掺入碳纳米管(CNT)作为导电填充材料,可提高纳米纤维素基水凝胶的电化学性能。但CNT在水凝胶基质中容易絮聚,将影响复合水凝胶电极的性

图2 不同纳米纤维素基水凝胶电极制备原理图
Fig. 2 Schematic diagram of preparation of different nanocellulose-based hydrogel electrodes
除了与碳基材料复合,纳米纤维素还可与导电聚合物聚苯胺(PANI)通过氧化原位聚合制备导电水凝
与传统的水凝胶材料不同,纳米纤维素可与导电材料通过协同作用形成三维多孔网络结构,这种网络结构提高了电解质离子的传输能力,也相应地提高了电极的电导率和速率性能。此外,纳米纤维素也改善了电极的机械性能,可以使超级电容器在不同应力、应变下正常工作。但该类电极主要以水为介质,电极的热稳定性较差,因此水凝胶电极在柔性电子设备中使用依旧具有挑战性。
纳米纤维素气凝胶具有密度低、孔隙率高、比表面积大等特性,在水处理、绝缘材料、能量储存领域具有广泛的应用前景。纳米纤维素气凝胶电极可由该类型水凝胶经大气压力干燥、超临界干燥、冷冻干燥制
CNF羟基上氢原子可与PANI的氮原子形成氢键,此外,PANI氨基上的氢原子也可与CNF的羟基形成氢键,通过双向氢键结合可将二者快速组装成超分子。基于此原理,Wang等
将CNF、还原性氧化石墨烯(RGO)和聚吡(PPy)结合,可以获得具有良好性能的电极材料。CNF除了可与PPy形成氢键稳定结合,还可提供电解质离子扩散通道,提高电极电导率。同时,CNF还作为柔性多孔基底支撑电活性材
纳米纤维素-石墨烯(GA)复合气凝胶虽然具有良好的离子传输通道和丰富的分子迁移反应位点,但其质量比电容较低(160 F/g

图3 不同形状CNF基电极形貌图
Fig. 3 Morphology images of different CNF-based electrode
与其他气凝胶材料相比,由于纳米纤维素良好的机械性能,其制备的气凝胶电极的可塑性增加。纳米纤维素的亲水性不仅有利于电极与电解质离子的接触,提高超级电容器速率性能;还表现出良好的润胀性能,改善了电极的循环性能。此外,纳米纤维素还可与导电微粒形成三维网络结构,缓解导电微粒的聚集,解决了电解质扩散不良问题。但纳米纤维素气凝胶的制备过程耗时耗力,因此探索合适的气凝胶制备条件对降低生产成本至关重要。有时也可以通过纳米纤维素的化学改性来调控气凝胶电极的孔隙结构,以提高纳米纤维素气凝胶电极的电化学性能。
纸基复合材料电极制造工艺简单、绿色环保,且具有优异的灵活性、良好的尺寸稳定性和低热膨胀系
真空过滤是将纳米纤维素与导电微粒混合制成均匀悬浮液,再经真空过滤将导电微粒搭载在纳米纤维素纸基底上的方法。Rao等
涂覆法也可用于活性物质的搭载。Koppolu等
将纳米纤维素制成柔性基底,然后通过介面合成,在其表面经一系列化学反应合成导电微粒,可将导电微粒搭载在柔性基底上。Zhou等
由于纸基电极具有较高的活性物质搭载量,因此其电化学性能良好。此外,与其他类型的纸基相比,纳米纤维素纸具有较高的机械稳定性,可以提高超级电容器的柔性。但是在液态电解质中,水的存在会破坏纤维间氢键,进而导致纸基电极的机械性能下降,成为纸基柔性电子设备的发展瓶颈。通过加入湿强剂可增加纸基电极的湿强度,从而改善电极的机械性能。此外,就真空过滤法而言,由于活性材料留着率较低,容易造成材料浪费,可以使用合适的助留、助滤剂来提高活性材料留着率,降低生产成本。
通过碳化有机物得到的多孔
纳米纤维素在炭化过程中容易发生聚集,导致所得炭化产物比表面积远低于理想值(1000~2000

图4 纳米纤维素衍生的碳基材料电极制备原理图和形貌图
Fig. 4 Schematic diagram and morphology of nanocellulose derived carbon electrode
尽管碳纳米纤维材料可通过在惰性气体中热解去除纳米纤维素中的有机成分直接获得,但由于炭化过程中糖苷键断裂及氧、氢元素的损失,致使其炭化产率较低(<20%
此外,还可通过添加纳米纤维素来改善电极材料的热稳定性和力学性能。聚丙烯酸甲酯(PMMA)机械性能和热稳定性差,且电导率低,不适合作电极材料。Bai等
由于在炭化过程中纳米纤维素多孔结构被保留,纳米纤维素衍生的多孔碳具有较高的电化学性能。纳米纤维素不仅可以用来提高多孔碳材料电极的机械性能,还可提高电极的比表面积和热稳定性,因此在超级电容器中具有一定的应用前景。但由于纳米纤维素本身的特性,纳米纤维素炭化产率较低,可以将纳米纤维素与其他含碳量高的生物质材料相结合来制备多孔碳材料,通过优化二者的比例来调控多孔碳的孔隙结构,可优化多孔碳电极的电化学性能。
碳气凝胶(CA)密度低、比表面积大、电导率高可应用于储能领域。纳米纤维素衍生的碳气凝胶可由纳米纤维素气凝胶经高温炭化、热解制
通过高温炭化,将纳米纤维素转化成具有高纵横比的碳纳米纤维,除了可以抑制导电微粒的聚集外,还能提供三维导电网络。纳米纤维素的亲水性有助于电解质离子的吸附,为离子传输提供有效途径。同时,纳米纤维素和GO可以形成稳定的三维网络结构,从而提高复合材料的稳定性。Yang等
通过炭化可以提高纳米纤维气凝胶电极的电导率。但在炭化过程中,纳米纤维素受热分解,导致电极亲水性变差,将增加电极与电解质的接触电阻,降低超级电容器的速率性能。此外,CA机械性能较差,对提高超级电容器的柔性不利,需要通过在炭化前体中加入耐高温的增强剂来提高CA机械性能。在炭化过程中还需要对炭化温度进行控制,防止气凝胶碳化过程中坍塌或使孔隙结构遭到破坏,进而影响多孔碳的电化学性能。
现阶段纳米纤维素基超级电容器电极的制备主要是将纳米纤维素与导电微粒复合,制成凝胶、多孔碳、纸基等复合材料,通过调节电极各组分的比例来优化超级电容器电极的电化学性能,从而提高超级电容器的比容量、循环性能、机械性能等参数。但是纳米纤维素作为新兴材料在储能设备中的应用还有待深入研究。目前,大多数研究都聚焦于电化学性能的优化,对机械性能研究较少,导致对电极的机械性能评估难以充分实现。
对于使用复合材料电极的超级电容器而言,活性材料的搭载与超级电容器电化学性能密切相关,当活性材料搭载质量较小时,电极电阻较高,可能导致超级电容器的充放电效率降低,若要求高的比电容,势必需要大体积的电极,这对高功率、高能量密度的便携式、可穿戴电子设备而言难以实现。再者,无论是导电聚合物,还是过渡金属氧化物都很难生物降解,容易引发各种环境问题,这些问题都将阻碍纳米纤维素基电极的推广和使用,以上所面临的问题均需在今后的研究中加以解决。
在探索高性能纳米纤维素基电极的过程中应注意以下几点:①为简化电极的制备步骤,降低制造成本,应尽量将纳米纤维素固有的性质充分保留,如对其孔隙结构、比表面积等进行调控,去探索性能更好、更环保、更绿色的合成策略;②在选择辅料及添加剂时,注重其电化学性能的同时,也应考虑其所带来的负面影响,如降解性、毒性等问题;③若要对超级电容器机械性能进行准确评估,就需要对电极的机械性能进行更深层次的研究;④探索绿色、高效、低成本的纳米纤维素制备方法对纳米纤维素基电极的商业化发展也至关重要。
参考文献
CAI J, NIU H X, WANG S, et al. High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers[J]. Journal of Power Sources, 2016, 324: 302-308. [百度学术]
高 昆, 孙姣姣, 沈梦霞, 等. 基于纳米纤维素的电催化与储能材料的研究进展[J]. 中国造纸, 2021,40(2): 72-80. [百度学术]
GAO K, SUN J J, SHEN M X, et al. Research Progress in Electrocatalysis and Energy Storage Materials Based on Nanocellulose [J]. China Pulp & Paper, 2021, 40(2): 72-80. [百度学术]
REECE R, LEKAKOU C, SMITH P A. A High-performance Structural Supercapacitor[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 25683-25692. [百度学术]
CAO Y J, YANG W, WANG M Y, et al. Metal-organic frameworks as highly efficient electrodes for long cycling stability supercapacitors[J]. International Journal of Hydrogen Energy, 2021, 46(35): 18179-18206. [百度学术]
HAN J Z, PING Y J, YANG S J, et al. High specific power/energy, ultralong life supercapacitors enabled by cross-cutting bamboo-derived porous carbons[J]. Diamond and Related Materials, DOI:10.1016/j.diamond.2020.108044. [百度学术]
TAER E, AGUSTINO A, AWITDRUS A, et al. The Synthesis of Carbon Nanofiber Derived from Pineapple Leaf Fibers as a Carbon Electrode for Supercapacitor Application[J]. Journal of Electroche⁃mical Energy Conversion and Storage, DOI:10.1115/1.4048405. [百度学术]
SANDHIYA M, VIVEKANAND, BALAJI S S, et al. Na2MoO4-Incorporated Polymer Gel Electrolyte for High Energy Density Flexible Supercapacitor[J]. ACS Applied Energy Materials, 2020, 3(11): 11368-11377. [百度学术]
SATO T, YAMAGISHI K, HASHIMOTO M, et al. Method to Reduce the Contact Resistivity between Galinstan and a Copper Electrode for Electrical Connection in Flexible Devices[J]. ACS Applied Materials & Interfaces, DOI:10.1021/acsami.1c00431. [百度学术]
ZHU J H, ZHANG Q, CHEN H P, et al. Setaria Viridis-inspired Electrode with Polyaniline Decorated on Porous Heteroatom-doped Carbon Nanofibers for Flexible Supercapacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(39): 43634-43645. [百度学术]
YIN X M, LI H J, HAN L Y, et al. Al Si3N4 Nanowires Membrane Based High-performance Flexible Solid-state Asymmetric Superca⁃pacitor[J]. Small, DOI:10.1002/smll.202008056. [百度学术]
HSU H H, KHOSROZADEH A, LI B, et al. An Eco-friendly, Nanocellulose/RGO/in Situ Formed Polyaniline for Flexible and Free-standing Supercapacitors[J]. ACS Sustain Chem Eng, 2019, 7(5): 4766-4776. [百度学术]
WANG T H, ZHANG W T, YANG S J, et al. Preparation of Foam-like Network Structure of Polypyrrole/Graphene Composite Particles Based on Cellulose Nanofibrils as Electrode Material[J]. ACS Omega, 2020, 5(10): 4778-4786. [百度学术]
CHAICHI A, VENUGOPALAN G, DEVIREDDY R, et al. A Solid-state and Flexible Supercapacitor that Operates across a Wide Temperature Range[J]. ACS Applied Energy Materials, 2020, 3(6): 5693-5704. [百度学术]
ZHU Y C, WU C J, YU D M, et al. Tunable micro-structure of dissolving pulp-based cellulose nanofibrils with facile prehydrolysis process[J]. Cellulose, 2021, 28(6): 3759-3773. [百度学术]
SONG L Y, MIAO X R, LI X H, et al. A tunable alkaline/oxidative process for cellulose nanofibrils exhibiting different morphological, crystalline properties[J]. Carbohydr Polym, DOI:10.1016/j.carbpol.2021.117755. [百度学术]
佀荣荣, 吴朝军, 于冬梅, 等. 纳米纤维素基2D/3D重金属吸附材料的研究进展[J]. 中国造纸, 2021, 40(2): 63-71. [百度学术]
SI R R,WU C J,YU D M, et al. Research Progress of Nanocellulose-based 2D/3D Heavy Metal Adsorption Materials [J]. China Pulp & Paper, 2021, 40(2): 63-71. [百度学术]
张 能, 林 涛, 蔺家成, 等. 不同维度纳米纤维素基复合材料的制备及其在储能器件中的应用[J]. 中国造纸, 2021, 40(6): 71-79. [百度学术]
ZHANG N,LIN T,LIN J C, et al. Nanocellulose Based Composite Materials with Different Dimensions and Their Application in Energy Storage Devices [J].China Pulp & Paper, 2021, 40(6): 71-79. [百度学术]
李艳丽, 邢惠萍, 李玉虎. CNC、CNF及BC对纸张加固效果的比较研究[J]. 中国造纸学报, 2021, 36(3): 81-86. [百度学术]
LI Y L,XING H P,LI Y H, et al.A Comparative Study on Paper Strengthening Performance of CNC, CNF, and BC[J].Transactions of China Pulp and Paper. 2021, 36(3): 81-86. [百度学术]
杜 超, 李海龙, 蒙启骏, 等. 木素对TEMPO氧化竹浆制备纳米纤维素的影响[J]. 中国造纸学报, 2017, 32(2): 1-6. [百度学术]
DU C,LI H L,MENG Q J, et al.Effect of Lignin on Nanocellulose Preparation by TEMPO-mediated Oxidion from Bamboo Pulp[J].Transactions of China Pulp and Paper. 2017, 32(2): 1-6. [百度学术]
朱亚崇, 吴朝军, 于冬梅, 等. 纳米纤维素制备方法的研究现状[J].中国造纸, 2020, 39(9): 74-83. [百度学术]
ZHU Y C,WU C J,YU D M, et al. Research Status of Nanocellulose Preparation Methods[J]. China Pulp & Paper, 2020, 39(9): 74-83. [百度学术]
JIANG W K, SHEN P Y, YI J L, et al. Surface modification of nanocrystalline cellulose and its application in natural rubber composites[J]. Journal of Applied Polymer Science,DOI: 10.1002/app.49163. [百度学术]
KONO H, UNO T, TSUJISAKI H, et al. Nanofibrillated Bacterial Cellulose Surface Modified with Methyltrimethoxysilane for Fiber-reinforced Composites[J]. ACS Applied Nano Materials, 2020, 3(8): 8232-8241. [百度学术]
ZENG Z, MAVRONA E, SACRE D, et al. Terahertz Birefringent Biomimetic Aerogels Based on Cellulose Nanofibers and Conductive Nanomaterials[J]. ACS Nano, 2021, 15(4): 7451-7462. [百度学术]
Wang R H, Dai X Y, Qian Z F, et al. Boosting Lithium Storage in Free-Standing Black Phosphorus Anode via Multifunction of Nanocellulose[J]. ACS Applied Materials Interfaces, 2020, 12(28): 31628-31636. [百度学术]
CAI J, NIU H T, LI Z Y, et al. High-performance Supercapacitor Electrode Materials from Cellulose-derived Carbon Nanofibers[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 14946-14953. [百度学术]
QU R J, WANG Y, LI D, et al. The study of rheological properties and microstructure of carboxylated nanocellulose as influenced by level of carboxylation[J]. Food Hydrocolloids, DOI:10.1016/j.foodhyd.2021.106985. [百度学术]
MARTIN N, YOUSSEF G. Dynamic properties of hydrogels and fiber-reinforced hydrogels[J]. J Mech Behav Biomed Mater, 2018, 85: 194-200. [百度学术]
HUANG Y, ZHONG M, SHI F K, et al. An Intrinsically Stretchable and Compressible Supercapacitor Containing a Polyacrylamide Hydrogel Electrolyte[J]. Angew Chem Int Ed Engl, 2017, 56(31): 9141-9145. [百度学术]
CURVELLO R, RAGHUWANSHI V S, GARNIER G. Engineering nanocellulose hydrogels for biomedical applications[J]. Adv Colloid Interface Sci, 2019, 267: 47-61. [百度学术]
GUAN Q F, YANG H B, HAN Z M, et al. Sustainable Cellulose-Nanofiber-based Hydrogels[J]. ACS Nano, 2021, 15(5): 7889-7898. [百度学术]
Alam A, Meng Q, Shi G, et al. Electrically conductive, mechanically robust, pH-sensitive graphene/polymer composite hydrogels[J]. Composites Science and Technology, 2016, 127: 119-126. [百度学术]
WU Y, SUN S M, GENG A B, et al. Using TEMPO-oxidized-nanocellulose stabilized carbon nanotubes to make pigskin hydrogel conductive as flexible sensor and supercapacitor electrode: Inspired from a Chinese cuisine[J]. Composites Science and Technology, DOI:10.1016/j.compscitech.2020.108226. [百度学术]
FOURMANN O, HAUSMANN M K, NEELS A, et al. 3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels[J]. Carbohydr Polym, DOI: 10.1016/j.carbpol.2021.117716. [百度学术]
HAN J Q, WANG S W, ZHU S L, et al. Electrospun Core-Shell Nanofibrous Membranes with Nanocellulose-stabilized Carbon Nanotubes for Use as High-performance Flexible Supercapacitor Electrodes with Enhanced Water Resistance, Thermal Stability, and Mechanical Toughness[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44624-44635. [百度学术]
HAN J Q, DING Q Q, MEI C T, et al. An intrinsically self-healing and biocompatible electroconductive hydrogel based on nanostruc⁃tured nanocellulose-polyaniline complexes embedded in a viscoelastic polymer network towards flexible conductors and electrodes[J]. Electrochimica Acta, 2019, 318: 660-672. [百度学术]
LIU Z K, CHEN J S, ZHAN Y, et al. F
杨桂花, 李伟栋, 和 铭,等. 纳米纤维素基气凝胶的制备及其吸附分离应用研究进展[J]. 中国造纸学报, 2021, 36(2): 87-96. [百度学术]
YANG G H,LI W D,HE M, et al. Research Progress on Preparation of Nanocellulose-based Aerogel and Its Application in Absorption and Separation [J]. Transactions of China Pulp and Paper, 2021, 36(2): 87-96. [百度学术]
CHEN Y M, ZHANG L, YANG Y, et al. Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications[J]. Adv Mater, DOI: 10.1002/adma.202005569. [百度学术]
WANG D C, YU H Y, QI D, et al. Supramolecular Self-assembly of 3D Conductive Cellulose Nanofiber Aerogels for Flexible Supercapacitors and Ultrasensitive Sensors[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24435-24446. [百度学术]
WESLING B N, DIAS G M V, MÜLLER D, et al. Enhanced Electrochemical Performance of Nanocellulose/PPy·CuCl2 Electrodes for All-cellulose-based Supercapacitors[J]. Journal of Electronic Materials, 2019, 49(2): 1036-1042. [百度学术]
ZHANG Y H, SHANG Z, SHEN M X, et al. Cellulose Nanofibers/Reduced Graphene Oxide/Polypyrrole Aerogel Electrodes for High-capacitance Flexible All-Solid-State Supercapacitors[J]. ACS Sustain Chem & Eng, 2019, 7(13): 11175-11185. [百度学术]
LIU Y, ZHOU J, ZHU E W, et al. Facile synthesis of bacterial cellulose fibres covalently intercalated with graphene oxide by one-step cross-linking for robust supercapacitors[J]. Journal of Materials Chemistry C, 2015, 3(5): 1011-1017. [百度学术]
WANG Y Y, FU Q J, BAI Y Y, et al. Construction and Application of nanocellulose/graphene/MnO2 three-dimensional com⁃posites as potential electrode materials for supercapacitors[J]. Journal of Materials Science: Materials in Electronics, 2019, 31(2): 1236-1246. [百度学术]
ZHOU S Y, KONG X Y, ZHENG B, et al. Cellulose Nanofiber @ Conductive Metal-organic Frameworks for High-performance Flexible Supercapacitors[J]. ACS Nano, 2019, 13(8): 9578-9586. [百度学术]
MAHADEVA S K, WALUS K, STOEBER B. Paper as a platform for sensing applications and other devices: a review[J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8345-8362. [百度学术]
XIAO L D, QI H J, QU K Q, et al. Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes[J]. Advanced Composites and Hybrid Materials, DOI:10.1007/s42114-021-00223-2. [百度学术]
DU H S, ZHANG M M, LIU K, et al. Conductive PEDOT:PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability[J]. Chemical Engineering Journal, DOI:10.10106/j.cej.2021.131994. [百度学术]
RAO J, LYU Z W, DING Q Q, et al. Rapid Processing of Holocellulose-based Nanopaper toward an Electrode Material[J]. ACS Sustain Chem Eng, 2021, 9(8): 3337-3346. [百度学术]
LIU R, MA L N, HUANG S, et al. Large Areal Mass and High Scalable and Flexible Cobalt Oxide/Graphene/Bacterial Cellulose Electrode for Supercapacitors[J]. Journal of Physical Chemistry C, 2016, 120(50): 28480-28488. [百度学术]
KOPPOLU R, BLOMQUIST N, DAHLSTRÖM C, et al. High-throughput Processing of Nanographite-Nanocellulose-based Electrodes for Flexible Energy Devices[J]. Industrial & Engineering Chemistry Research, 2020, 59(24): 11232-11240. [百度学术]
QI W H, LYU R H, NA B, et al. Nanocellulose-assisted Growth of Manganese Dioxide on Thin Graphite Papers for High-Performance Supercapacitor Electrodes[J]. ACS Sustain Chem Eng, 2018, 6(4): 4739-4745. [百度学术]
BALDINELLI A, DOU X, BUCHHOLZ D, et al. Addressing the energy sustainability of biowaste-derived hard carbon materials for battery electrodes[J]. Green Chemistry, 2018, 20(7): 1527-1537. [百度学术]
LIU H L, LIU H H, DI S L, et al. Advantageous Tubular Structure of Biomass-derived Carbon for High-performance Sodium Storage[J]. ACS Applied Energy Materials, 2021, 4(5): 4955-4965. [百度学术]
FISCHER J, THÜMMLER K, FISCHER S, et al. Activated Carbon Derived from Cellulose and Cellulose Acetate Microspheres as Electrode Materials for Symmetric Supercapacitors in Aqueous Electrolytes[J]. Energy & Fuels, 2021, 35(15): 12653-12665. [百度学术]
LI Z, AHADI K, JIANG K, et al. Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitors[J]. Nano Research, 2017, 10(5): 1847-1860. [百度学术]
Geng S Y, Wei J Y, Jonasson S, et al. Multifunctional Carbon Aerogels with Hierarchical Anisotropic Structure Derived from Lignin and Cellulose Nanofibers for CO2 Capture and Energy Storage[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7432-7441. [百度学术]
WANG L, BORGHEI M, ISHFAQ A, et al. Mesoporous Carbon Microfibers for Electroactive Materials Derived from Lignocellulose Nanofibrils[J]. ACS Sustain Chem Eng, 2020, 8(23): 8549-8561. [百度学术]
BAI Q H, XIONG Q C, LI C, et al. Hierarchical Porous Carbons from Poly(methyl methacrylate)/Bacterial Cellulose Composite Monolith for High-performance Supercapacitor Electrodes[J]. ACS Sustain Chem Eng, 2017, 5(10): 9390-9401. [百度学术]
WANG Y Y, ZHOU Z H, ZHU J L, et al. Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient micro⁃wave absorption[J]. Composites Part B: Engineering, DOI:10.1016/j.compositesb.2021.108985. [百度学术]
ZHANG Z, LI L, QING Y, et al. Manipulation of Nanoplate Structures in Carbonized Cellulose Nanofibril Aerogel for High Performance Supercapacitor[J]. Journal of Physical Chemistry C, 2019, 123(38): 23374-23381. [百度学术]
WANG M, CHEN Y L, QIN Y L, et al. Compressible, Fatigue Resistant, and Pressure-sensitive Carbon Aerogels Developed with a Facile Method for Sensors and Electrodes[J]. ACS Sustain Chem Eng, 2019, 7(15): 12726-12733. [百度学术]
YANG Q L, YANG J W, GAO Z D F, et al. Carbonized Cellulose Nanofibril/Graphene Oxide Composite Aerogels for High Performance Supercapacitors[J]. ACS Applied Energy Materials, 2019, 3(1): 1145-1151. [百度学术]
LYU Y Y, ZHOU Y, SHAO Z Q, et al. Nanocellulose-derived carbon nanosphere fibers-based nanohybrid aerogel for high performance all-solid-state flexible supercapacitors[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(9): 8585-8594. CPP [百度学术]