摘要
电子产品日渐突出的散热问题,引起了人们对电子领域热管理的广泛关注。柔性导热材料具有高韧性、高弹性、高导热、灵活性等特性,可运用于柔性电子器件,轻、薄型电子设备,电池等领域,帮助解决其散热问题。纸张及薄膜具有良好的柔韧性、优异的加工性和厚度可调整性,是良好的柔性导热材料。本文概述了近年来导热纸(膜)的研究进展,对不同基材的导热纸进行了归纳分类和介绍,重点讨论了纤维素基导热纸的制备方法、导热性能、导热性能测试方法及机械性能。
近年来,随着电子产品向小型化、轻型化、薄型化发展,其散热问题日渐突出。电子产品不断增高的集成度及功率、不断减小的空间,导致其功率密度增大,使用过程中易出现产热高且难以及时排出的现象。大量的热使芯片等核心元器件温度迅速升高,严重影响了电子产品的稳定运行性和长期可靠性。传统的导热材料是金属,优点是热导率高、强度高、耐磨性好、易加工、成本低和可实现规模生产等。但金属材料密度高、灵活性差、易腐蚀,且热膨胀系数较高,高电流密度条件下长时间工作,容易导致功能器件失效,缩短器件的使用寿
导热纸(膜)包括以下几类,一是以植物纤维为基体制造的纸或膜;二是用碳材料制备的纸或膜材料;三是以合成高分子材料为基体制备的纸状或膜状材料。
天然纤维素来自植物,可通过酸或碱高温处理等化学方法去除木质素和半纤维素获得。纤维素是一种可再生资源,是可降解的环境友好型材料。将纤维素进一步处理能获得纤维尺寸更小的纳米纤维素,其具有质量轻、机械性能好、比表面积高等优点。具有优异结构和性能的纤维素已被用于制造各种新型材料。多年来,研究者们投入了巨大努力来使纤维素功能化,其中一方面就是热管理。纤维素基导热纸(膜)以纤维素纤维(CF)为骨架,通过导入导热填料改善导热性能。
湿式造纸法即为传统的造纸工艺,以水为介质对纸浆纤维进行分散、输送和上网成形。利用该工艺能够简便地制造出导热纸。Kong等
涂布法是纸及纸板加工的一种常用方法,将制备好的涂料以特定的方式涂覆于表面,赋予纸张新的性能。涂布法同样适用于膜或其他基材。Jeon等
过滤

图1 过滤法示意图
Fig. 1 Process of filtration
浸渍逐层自组装法是通过将纸或膜浸入含有导热填料的分散液中,干燥,再浸渍,再干燥,重复多次,从而得到想要的填料层数。该方法有利于提高材料的面内热导率。Song等
蒸发诱导自组装法是将CF和导热填料混合、分散后,通过溶剂的汽化诱导混合物进行自组装的方法。在溶剂蒸发过程中,导热填料浓度增高,显著增强了填料片与片之间的相互作用。在不断沉淀过程中,纳米片被诱导而逐渐定向排列,形成一致的取向,从而获得特定的层次结构。Zeng等
将纳米纤维素(NC)制成气凝胶,导热填料在溶剂中分散均匀,将NC气凝胶放置于填料分散液中,让导热填料灌注到NC气凝胶内,然后通过压光得到导热材

图2 气凝胶灌注法示意图
Fig. 2 Process of aerogel perfusion
由纤维素转变为纳米纤维素,除保留了纤维素的性质外,还增加了高强度、高结晶度,质轻且比表面积大等优异性
(1)常规纤维素基导热纸(膜)
纤维素纤维可作为基体材料制造导热纸(膜)。Chen等
(2)纳米纤维素(NC)基导热纸(膜)
NC指直径小于100 nm的纤维素,可通过化学法、机械法或生物酶法制
NC基材面内导热性优于CF材料或纸张。Uetani等
(1)NC/金属填料导热纸(膜)
金属是良好的导热材料,添加金属填料可改善材料的导热性能。一般用于改善导热性能的金属填料有铝、铜、银、金等。目前,金属填料应用于聚合物复合材料中较多,应用于NC复合材料中较少。金属填料除了是热的良导体,也是电的良导体,会增强复合材料的导电性。此外,添加金属填料,还会增加复合材料的密度及氧化腐蚀的概率。Shen等

图3 添加填料制备导热纸(膜)照片
Fig. 3 Images of thermally conductive paper (films) by adding fillers
(2)NC/碳系填料导热纸(膜)
碳系填料具有超高的导热性能,并具有密度低、质量轻的特点,但同金属填料一样,碳系材料同样具有导电的特性,这在应用到对绝缘要求高的领域具有一定的限制。若应用于绝缘领域,需要控制碳系材料的添加配比或采取其他措施来提高复合材料的绝缘性。目前,应用于NC导热纸(膜)的碳材料主要包括石墨、石墨烯、还原氧化石墨烯、碳纳米管、碳纤维、金刚石等。CNF/纳米金刚石薄膜如
(3)NC/陶瓷填料导热纸(膜)
陶瓷填料一般为绝缘体,缺乏自由移动的电子,传热方式主要依靠声子传热,即通过原子和分子的振动传导热量。常用的陶瓷填料包括金属氧化物(如Al2O3、MgO、ZnO、BeO,其中BeO有剧毒、ZnO为半导体)、氮化物(如AlN、BN、Si3N4,AlN易水解)和碳化物(如SiC,半导体)等。NC/陶瓷填料导热纸(膜)因具备绝缘性能而在要求绝缘性的电子设备散热应用上具有良好的前景。
氮化硼(BN)是制备NC/陶瓷填料导热纸中最常用的填料。改性BN(BNNS)CNF薄膜如
(4)NC/混合填料导热纸(膜)
填料与基体之间或填料与填料之间的高界面热阻一直是聚合物复合材料实现有效导热的主要瓶颈之一。不同的导热填料基于各自的性能,混合后可以互相配合,降低界面热阻,进一步提高导热纸(膜)的热导率。另外,也可以将不同形状、尺寸的相同填料进行混合,提高填料和基材的结合性,降低孔隙率,降低界面热阻。Yang等
注 OCNC—氧化纤维素纳米晶体;QCN—季铵化纤维素纳米晶体;CNFA—纤维素纳米纤丝气凝胶; GO—石墨烯;f-G—功能化石墨烯; GNPs—石墨纳米片;GNS—石墨烯纳米片;f-GNS—功能化石墨烯纳米片;ND—纳米金刚石;PDA—聚多巴胺; h-BN—六方氮化硼;BNTs—氮化硼纳米管;f-BNNS—功能化氮化硼纳米片;BNNS-OH—羟基氮化硼纳米片;BA-NH2—氨基化氮化硼/氮化铝;AgND—银纳米颗粒;TS—拉伸强度,MPa;Y—杨氏模量,GPa; i—面内热导率提升率;t—法向热导率提升率。
碳系材料具有超高的导热性能。上文提到,碳系材料可以作为导热填料使用,也可以独自成纸(膜
石墨膜是一种比较成熟的产品,已经实现产业化。生产石墨膜的企业包括日本松下、美国Graftech、日本Kaneka、碳元科技、中石科技和飞荣达等。为了提高石墨膜的机械性能,需要对裸膜进行涂胶、覆膜等工艺处理才能进入下游市
石墨烯热导率高达5300 W/(m·K

图4 碳系导热纸和合成高分子材料导热纸(膜)照片
Fig. 4 Images of carbon-based and synthetic polymer material-based thermally conductive paper (films)
巴基纸(bucky paper
合成高分子材料具有良好的可塑性、绝缘性和机械强度,但导热性非常差。采用高导热填料对其进行改性是提高合成高分子材料导热性能的主要途径。改性后,材料在保留高绝缘性和机械强度的同时,提高了导热性。目前的改性方法有纤维吸附、粉末混合、溶液共混、双辊混炼、熔融混合等。一般进行导热改性的合成高分子材料主要有芳纶、环氧乙烷、尼龙、聚乙烯、聚丙烯、聚乙烯醇维等。秦盼亮等
静电纺丝技术是一种制备纳米/亚微米级材料的特殊方法,因其方便、灵活、操作简单等特点,在制备亚微米/纳米级材料方面受到广泛关注。木质纤维素、高聚物、复合材料、半导体材料、陶瓷材料等很多种材料都适用电纺丝
近年来,越来越多的研究人员关注导热纸(膜)这一领域,并尝试应用于热管理,尤其是小、轻型电子设备或柔性电子产品。但目前研究多集中在导热纸的研制中,对于应用的研究还比较少,仍处于初始阶段。虽然有些导热纸(膜)经导热改性后热导率有了较大提升,但其数值仍处于较低水平。这就需要研究人员一方面选择合适的基材作为骨架结构,另一方面在导热填料/聚合物的种类、粒径、排列、配比、热处理、表面功能化、机械压制和界面声子散射等方面继续深耕,减少材料界面热阻。导热纸(膜)的开发依然任重道远。
参考文献
孙康康. 柔性石墨膜制备及其导热性能研究[D]. 武汉: 武汉理工大学, 2018. [百度学术]
SUN K K. Preparation of Flexible Graphite Film and Study on its Thermal Conductivity Property[D]. Wuhan: Wuhan University of Technology, 2018. [百度学术]
封 伟, 李冬杰, 吕 鹏. 柔性导热纳米复合材料研究进展[J]. 航空材料学报, 2013, 33(4): 90-97. [百度学术]
FENG W, LI D J, LYU P. Research Progress of Flexible Nanocomposites with High Thermal Conductivity[J]. Journal of Ronautical Materials, 2013, 33(4): 90-97. [百度学术]
KONG H H, CHEN S L, HE W J, et al. Preparation and Properties of Thermally Conductive Copper Paper[J]. BioResources, 2018, 13(2): 3986-3993. [百度学术]
王 秀, 俞智怀, 房桂干,等. 导热氮化硼复合绝缘纸的制备与性能研究[J]. 中国造纸学报, 2019, 34(4): 7-13. [百度学术]
WANG X, YU Z H, FANG G G, et al. Preparation and Properties of Thermal Conductive Boron Nitride Composite Insulation Paper[J]. Transactions of China Pulp and Paper, 2019, 34(4): 7-13. [百度学术]
JEON D, KIM S H, CHOI W, et al. An Experimental Study on the Thermal Performance of Cellulose-graphene-based Thermal Interface Materials[J]. International Journal of Heat and Mass Transfer, 2019, 132: 944-951. [百度学术]
SONG G C, KANG R Y, GUO L C, et al. Highly Flexible Few-layer Ti3C2 MXene/Cellulose Nanofiber Heatspreader Films with Enhanced Thermal Conductivity[J]. New Journal of Chemistry, 2020, 44(17): 7186-7193. [百度学术]
SONG N, JIAO D J, CUI S Q, et al. Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose-Graphene Nanosheets Hybrid Films for Thermal Management[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2924-2932. [百度学术]
ZENG H X, WU J Y, MA Y P, et al. Scalable Approach to Construct Self-assembled Graphene-based Films with an Ordered Structure for Thermal Management[J]. ACS Applied Materials & Interfaces, 2018,10(48): 41690-41698. [百度学术]
WANG X, YU Z H, JIAO L, et al. Aerogel Perfusion-prepared h-BN/CNF Composite Film with Multiple Thermally Conductive Pathways and High Thermal Conductivity[J]. Nanomaterials, DOI: 10.3390/nan09071051. [百度学术]
CHEN L, HOU X S, SONG N, et al. Cellulose/Graphene Bioplastic for Thermal Management: Enhanced Isotropic Thermally Conductive Property by Three-Dimensional Interconnected Graphene Aerogel[J]. Composites Part A: Applied Science and Manufac⁃turing, 2018, 107: 189-196. [百度学术]
徐 荧, 李 曜, 赵培涛,等. 纳米纤维素基导热复合材料的研究进展[J]. 中国造纸学报, 2020, 35(4): 63-70. [百度学术]
XU Y, LI Y, ZHAO P T, et al. Research and Development of Nanocellulose-based Thermal Conductive Composites[J]. Transactions of China Pulp and Paper, 2020, 35(4): 63-70. [百度学术]
TIAN X J, PAN T, DENG B J, et al. Synthesis of Sandwich-liked Nanostructure Fillers and Their Use in Different Types of Thermal Composites[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40694-40703. [百度学术]
栾云浩, 曹 慧, 刘婉嫕,等. 纤维素基纳米复合材料在储能领域的应用研究进展[J], 中国造纸, 2021, 40(10): 100-107. [百度学术]
LUAN Y H, CAO H, LIU W Y, et al. Research Progress in the Application of Cellulose-based Nanocomposites for Energy Storage[J]. China Pulp & Paper, 2021, 40(10): 100-107. [百度学术]
霍 倩, 刘姝瑞, 谭艳君,等. 纳米纤维素的制备及应用研究进展[J]. 纺织科学与工程学报, 2020, 37(3): 94-100. [百度学术]
HUO Q, LIU S R, TAN Y J, et al. Preparation and Application Research Progress of Nano-cellulose[J]. Journal of Textile Science and Engineering, 2020, 37(3): 94-100. [百度学术]
UETANI K, OKADA A, OYAMA H T. Crystallite size effect on thermal conductive properties of nonwoven nanocellulose sheets[J]. BioMacromolecules, 2015, 16(7): 2220-2227. [百度学术]
CHOWDHURY R A, RAI A, GLYNN E, et al. Superior, processing-dependent thermal conductivity of cellulose Nanocrystal-Poly (vinyl alcohol) composite films[J]. Polymer, 2019,164: 17-25. [百度学术]
SHEN Z M, FENG J C. Highly Thermally Conductive Composite Films Based on Nanofibrillated Cellulose in Situ Coated with a Small Amount of Silver Nanoparticles[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 24193-24200. [百度学术]
ITO H, SAKATA M, HONGO C, et al. Cellulose nanofiber nanocomposites with aligned silver nanoparticles[J]. Nanocompo⁃sites, 2018, 4(4): 167-177. [百度学术]
CUI S Q, JIANG F, SONG N, et al. Flexible Films for Smart Thermal Management: Influence of Structure Construction of Two-dimensional Graphene Network on Active Heat Dissipation Response Behavior[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 30352-30359. [百度学术]
TOMINAGA Y, SATO K, HOTTA Y, et al. Improvement of thermal conductivity of composite film composed of cellulose nanofiber and nanodiamond by optimizing process parameters[J]. Cellulose, 2018, 25(7): 3973-3983. [百度学术]
WANG X W, WU P Y.Fluorinated carbon nanotube-nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity and electrical insulation[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34311-34321. [百度学术]
ZHU H L, LI Y Y, FANG Z Q, et al. Highly Thermally Conductive Papers with Percolative Layered Boron Nitride Nanosheets[J]. ACS Nano, 2014, 8(4): 3606-3613. [百度学术]
ZHANG K, LU Y X, HAO N K, et al. Enhanced thermal conductivity of cellulose nanofibril/aluminum nitride hybrid films by surface modificationof aluminum nitride[J]. Cellulose, 2019, 26(16): 8669-8683. [百度学术]
YANG S D, XUE B, LI Y, et al. Controllable Ag-rGO heterostructure for highly thermal conductivity in layer-by-layer nanocellulose hybrid films[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2019.123072. [百度学术]
YAO Y M, ZENG X L, PAN G R. Interfacial Engineering of Silicon Carbide Nanowire/Cellulose Microcrystal Paper towards High Thermal Conductivity[J].ACS Applied Materials & Interfaces, 2016, 8(45): 31248-31255. [百度学术]
MA M, XU L, QIAO L L, et al. Nanofibrillated Cellulose/MgO@rGO composite films with highly anisotropic thermal conductivity and electrical insulation[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2019.123714. [百度学术]
SONG N, HOU X S, CHEN L, et al. A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 17914-17922. [百度学术]
SONG N, JIAO D J, DING P, et al. Anisotropic Thermally Conductive Flexible Films based on Nanofibrillated Cellulose and Aligned Graphene Nanosheets[J]. Journal of Materials Chemistry C, 2016, 4(2): 305-314. [百度学术]
REN L, WANG M J, LU S R, et al. Tailoring thermal transport properties of Graphene paper by structural engineering[J]. Scientific Reports, DOI: 10.1038/S41598-018-38106-0. [百度学术]
LI L, MA Z G, XU P H, et al. Flexible and alternant-layered cellulose nanofiber/graphene film with superior thermal conductivity and efficient electromagnetic interference shielding[J]. Composites: Part A, Applied Science & Manufacturing, DOI: 10.1016/j.compositesa.2020.106134. [百度学术]
CHEN Y P, HOU X, KANG R Y, et al. Highly flexible biodegradable cellulose nanofiber/graphene heat-spreader films with improved mechanical properties and enhanced thermal conductivity[J]. Journal of Materials Chemistry C, 2018, 6(46): 12739-12745. [百度学术]
LI L, ZHOU B, HAN G J, et al. Understanding the effect of interfacial engineering on interfacial thermal resistance in nacre-like cellulose nanofiber/graphene film[J]. Composites Science and Technology, DOI: 10.1016/j.compscitech.2020.108229. [百度学术]
LI G H, TIAN X J, XU X W, et al. Fabrication of robust and highly thermally conductive nanofibrillated cellulose/graphite nanoplatelets composite papers[J]. Composites Science and Technology, 2017, 138: 179-185. [百度学术]
SATO K, TOMINAGA Y, HOTTA Y, et al. Cellulose nanofiber/nanodiamond composite films: Thermal conductivity enhancement achieved by a tuned nanostructure[J].Advanced Powder Technology, 2018, 29(4): 972-976. [百度学术]
KATO T, MATSUMOTO T, HONGO C, et al. Mechanical and thermal properties of cellulose nanofiber composites with nanodiamond as nanocarbon filler[J]. Nanocomposites, 2018, 4(4): 127-136. [百度学术]
SONG N, CUI S Q, HOU X S, et al. Significant Enhancement of Thermal Conductivity in Nanofibrillated Cellulose Films with Low Mass Fraction of Nanodiamond[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40766-40773. [百度学术]
TOMINAGA Y, SATO K, HOTTA Y, et al. Effect of the addition of Al2O3 and h-BN fillers on the thermal conductivity of a cellulose nanofiber/nanodiamond composite film[J]. Cellulose, 2019, 26(9): 5281-5289. [百度学术]
YU C P, ZHANG Q C, ZHANG J, et al. One-step in Situ Ball Milling Synthesis of Polymer-functionalized Few-layered Boron Nitride and Its Application in High Thermally Conductive Cellulose Composites [J]. ACS Applied Nano Materials, 2018, 1(9): 4875-4883. [百度学术]
ZENG X L, SUN J J, YAO Y M, et al. A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity[J]. ACS Nano, 2017, 11(5): 5167-5178. [百度学术]
WU K, FANG J C, MA J R, et al. Achieving a Collapsible, Strong and Highly Thermally Conductive Film Based on Oriented Functionalized Boron Nitride Nanosheets and Cellulose Nanofiber[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 30035-30045. [百度学术]
WANG X, YU Z H, BIAN H Y, et al. Thermally Conductive and Electrical Insulation BNNS/CNF Aerogel Nano-paper[J]. Polymers, DOI: 10.3390/polym11040660. [百度学术]
ZHOU L H, YANG Z, LUO W, et al. A Thermally Conductive, Electrical Insulating, Optically Transparent Bi-layer Nanopaper[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28838-28843. [百度学术]
HU Z R, WANG S, CHEN G K, et al. An aqueous-only, green route to exfoliate boron nitride for preparation of high thermal conductive boron nitride nanosheet/cellulose nanofiber flexible film[J]. Composites Science & Technology, 2018, 168: 287-295. [百度学术]
SONG N, WANG Q, JIAO D J, et al. Highly thermally conductive SiO2-coated NFC/BNNS hybrid films with water resistance[J]. Composites Part A: Applied Science and Manufacturing, DOI 10.1016/j.compositesa.2020.106261. [百度学术]
ZHANG K, TAO P, ZHANG Y H, et al. Highly thermal conductivity of CNF/AlN hybrid films for thermal management of flexible energy storage devices[J]. Carbohydrate Polymers, 2019, 213: 228-235. [百度学术]
LEE W, KIM J. Enhanced through-plane thermal conductivity of paper-like cellulose film with treated hybrid fillers comprising boron nitride and aluminum nitride[J]. Composites Science and Technology, DOI: 10.1016/j.compscitech.2020.108424. [百度学术]
CUI S Q, SONG N, SHI L Y, et al. Enhanced thermal conductivity of bioinspired nanofibrillated cellulose hybrid film based on graphene and nanodiamonds[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(16): 6363-6370. [百度学术]
SUN J J, ZENG X L, SUN R, et al. Silver Nanoparticle deposited Boron Nitride Nanosheet/Nanofibrillated Cellulose Composites with Enhanced Thermal Conductivity[C]. 18th International Conference on Electronic Packaging Technology (ICEPT), Harbin, China: IEEE, 2017: 226-230. [百度学术]
SONG N, PAN H D, LIANG X F, et al. Structural design of multilayer thermally conductive nanofibrillated cellulose hybrid film with electrical insulating and antistatic propertyies[J]. Journal of Materials Chemistry C, 2018, 6(26): 7085-7091. [百度学术]
FENG W, QIN M M, FENG Y Y. Toward highly thermally conductive all-carbon composites: Structure control[J]. Carbon, 2016, 109: 575-597. [百度学术]
陈建君. 高导热石墨膜的分类及其生产工艺[J]. 炭素, 2015(3): 26-29+44. [百度学术]
CHEN J J. Classification of high thermal conductive graphite film and its production technology[J]. Carbon, 2015 (3): 26-29+44. [百度学术]
张旭东, 邱杨率, 吴益民,等. 原料特性和制备工艺对柔性石墨膜性能的影响[J]. 硅酸盐通报, 2019, 38(12): 3988-3992+4012. [百度学术]
ZHANG X D, QIU Y S, WU Y M, et al. Effect of Raw Material Characteristics and Preparation Process on Thermal Conductivity of Flexible Graphite Film[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 3988-3992+4012. [百度学术]
BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of Single-Layer graphene [J]. Nano Letters, 2008, 8(3): 902-907. [百度学术]
VU M C, THI THIEU N A, LIM, J H, et al. Ultrathin thermally conductive yet electrically insulating exfoliated graphene fluoride film for high performance heat dissipation[J]. Carbon, 2020, 157: 741-749. [百度学术]
XIE Y S, YUAN P Y, WANG T Y, et al. Switch on the high thermal conductivity of graphene paper[J ]. Nanoscale, 2016, 8(40): 17581-17597. [百度学术]
XIANG J L, DRZALl L T. Thermal conductivity of exfoliated graphite nanoplatelet paper[J]. Carbon, 2011, 49(3): 773-778. [百度学术]
XIN G Q, SUN H T, HU T, et al. Large-area Freestanding Graphene Paper for Superior Thermal Management[J]. Advanced Materials, 2014, 26(26): 4521-4526. [百度学术]
KWON Y J, KWON Y, PARH H S, et al. Mass-produced Electrochemically Exfoliated Graphene for Ultrahigh Thermally Conductive Paper Using a Multimetal Electrode System[J]. Advanced Materials, DOI: 10.1002/admi.201900095. [百度学术]
WANG X W, WU P Y. Highly Thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21946-21954. [百度学术]
RINZLER A G, LIU J, DAI H J, et al. Large-scale purification of single-wall carbon nanotubes: process, product, and characteriza⁃tion[J]. Applied Physics A: Materials Science and Processing, 1998, 67(1): 29-37. [百度学术]
XIA Q S, ZHANG Z C, LIU Y J, et al. Buckypaper and its composites for aeronautic applications[J]. Composites Part B: Engineering, DOI: 10.1010/j.compositesb.2020.108231. [百度学术]
MU B K, LI X, FENG X, et al. Relation of the Electrical Conductivity and the Thermal Conductivity to the Young’s Modulus of Buckypapers[J]. International Journal of Thermophysics, DOI: 10.1007/s10765-021-02806-z. [百度学术]
WANG F Z, CAI X X. Improvement of mechanical properties and thermal conductivity of carbon fiber laminated composites through depositing graphene nanoplatelets on fibers[J]. Journal of Materials Science, 2019, 54(5): 3847-3862. [百度学术]
张天宇. 超薄柔性石墨纸及其石墨烯复合膜的制备及导热电热性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2017. [百度学术]
ZHANG T Y. Studied on the preparation and thermal conductivity and electric thermal performance of ultra-thin flexible graphite paper and its graphene composite film[D]. Harbin: Harbin Engineering University, 2017. [百度学术]
秦盼亮, 谢 瑶, 张 楠,等. AF-PDA@h-BN二元纸基复合材料导热绝缘性能的研究[J]. 中国造纸, 2018, 37(11): 7-11. [百度学术]
QIN P L, XIE Y, ZHANG N, et al. Study of Thermal Conductivity and Insulation Properties of AF-PDA@h-BN Binary Paper-based Composite[J]. China Pulp & Paper, 2018, 37(11): 7-11. [百度学术]
WANG T, OU D H, LIU H H, et al. Thermally Conductive Boron Nitride Nanosheet Composite Paper as a Flexible Printed Circuit Board[J]. ACS Applied Nano Materials, 2018, 1(4): 1705-1712. [百度学术]
贾程瑛, 金永灿, 宋君龙. 木质纤维素电纺丝的研究进展[J]. 纤维素科学与技术, 2013, 21(4): 69-76. [百度学术]
JIA C Y, JIN Y C, SONG J L. Electrospinning of Lignocellulose-Based Materials: A Review[J]. Journal of Cellulose Science and Technology, 2013, 21(4): 69-76. [百度学术]
JIA C Y, SONG J L, JIN Y C, et al. Controlled-release drug carriers based hierarchical silica microtubes templated from cellulose acetate nanofibers[J]. Journal of Applied Polymer Science, DOI: 10.1002/app.42562. [百度学术]
JIA C Y, HE S Y, SONG J L, et al. Fabrication of micro/mesoporous silica tubes templated by electrospun cellulose acetate fibers[J]. Cellulose Chemistry and Technology, 2017, 51(718): 693-701. [百度学术]
ZENG X L, YE L, GUO K, et al. Fibrous Epoxy Substrate with High Thermal Conductivity and Low Dielectric Property for Flexible Electronics[J]. Advanced Electronic Materials, DOI: 10.1002/aelm.201500485. [百度学术]