摘要
采用醇沉法从桉木预水解液中提取半纤维素粗多糖(PHLP),并利用DEAE-650M离子交换柱对其进行分离纯化,对纯化得到的中性多糖PHLP-1和酸性多糖PHLP-2两种组分进行分析。单糖组分结果表明,PHLP-1和PHLP-2均由阿拉伯糖、木糖、半乳糖、甘露糖及葡萄糖组成,摩尔比分别为0.09∶1∶0.13∶0.07∶0.35和0.1∶1∶0.03∶0.09∶0.08。红外光谱测定表明,两种组分均具有多糖的特征吸收峰。扫描电子显微镜表明,PHLP-1和PHLP-2呈无序杂乱的结构形态。抗氧化实验结果表明,两种纯化的多糖组分均具有一定的抗氧化性且存在量效关系,抗氧化能力强弱顺序为:PHLP-2>PHLP-1>PHLP。
随着黏胶纤维以及纤维制品需求量的不断增加,未来几年内用于生产再生纤维的溶解浆产量也日益增
在预水解液半纤维素进行高附加值利用时,预水解液中的杂质会阻碍其有效利用,因此需要对半纤维素进行分离和纯
本研究通过对半纤维素粗多糖分离纯化得到纯化多糖,对其单糖成分、结构表征及体外抗氧化活性进行研究,以期对预水解液的进一步研究奠定理论基础。
桉木预水解液(PHL),山东太阳纸业股份有限公司;浓硫酸、氯化钠、无水乙醇,分析纯,天津市江天化工技术有限公司;无水甲醇,色谱纯,天津市康科德科技有限公司;DEAE-650M,生化试剂,TOSOH公司;葡萄糖、木糖、阿拉伯糖等,色谱纯,Sigma公司。
7000B气质联用仪,美国安捷伦公司;T6新世纪紫外可见分光光度计,北京普析通用仪器有限责任;N-1100旋转蒸发仪,上海爱朗仪器有限公司;FTIR-650傅里叶变换红外光谱仪,天津港东科技发展股份有限公司;H3021D高速离心机,上海知信实验仪器技术有限公司;SCIENTZ-10N冷冻干燥机,宁波新芝生物科技股份有限公司;1530VP扫描电子显微镜,德国LEO公司。
将离心除杂后的桉木预水解液原样进行旋转蒸发浓缩,使用浓硫酸酸化预水解液至pH值2.0,除去木素,静置过夜。取上清液以体积比1∶4的比例加入无水乙醇沉淀(使无水乙醇含量达到80%),静置24 h,8000 r/min离心15 min,收集沉淀物,真空冷冻干燥获得半纤维素粗多糖(PHLP)。
将PHLP配制成浓度为1 mg/mL的溶液,取20 mL溶液加样至DEAE-650M阴离子交换层析柱,依次用蒸馏水、0.2、0.4、0.6 mol/L的NaCl溶液进行梯度洗脱,每个梯度洗脱100管。使用收集器收集,每管收集5 mL。采用苯酚-硫酸
釆用硫酸-咔唑法测

图1 葡萄糖醛酸溶液标准曲线
Fig. 1 Standard curve of glucuronic acid solution
分别配置1 mg/mL的各单糖标准溶液,包括葡萄糖、鼠李糖、阿拉伯糖、木糖、甘露糖及半乳糖放入试管中。分别取0、40、80、100、250、500 µL单糖冻干。在冻干后的标准单糖样品中,分别加入50 μL浓度为20 mg/mL的甲氧基铵盐酸盐/吡啶溶液,40℃水浴80 min后加入80 μL的N,O-双(三甲基硅基)三氟乙酰胺(BSTFA),混匀,40℃水浴80 min,然后在10000 r/min下离心10 min,取上清液过0.22 μm滤膜后置于进样瓶,进行气相色谱-质谱联用技术(GC-MS)分析。
称取2 mg多糖于反应釜中,加入5 mL三氟乙酸(2 mol/L 三氟乙酸(TFA)),密封后120℃水解2 h,之后加入无水甲醇旋蒸除去残留TFA,最后加入2 mL去离子水,混匀,取100 μL混合液于新的离心管中,真空冷冻干燥。按照1.3.5.1标准单糖的衍生化方法处理,反应产物进行气质分析。
称取纯化后的多糖至玛瑙研钵中,按照1∶100的比例加入干燥后的溴化钾做分散剂,研磨成微细粉末,然后置于模具中,以10 MPa 压力压制1 min制片,进行红外光谱测定。光谱扫描范围400~4000 c
在金属样品台上粘贴一块导电胶用于固定样品,取适量纯化后的多糖样品置于导电胶上,用洗耳球轻轻吹去浮样,将金属样品台放入离子溅射装置中镀一层导电金膜,镀膜后用1530VP扫描电子显微镜进行观察。
参考冯炘等
(1) |
式中,A1为实验组吸光度;A2为样品本底吸光度;A0为空白组吸光度。
参考XU等
(2) |
式中,B1为实验组吸光度;B2为样品本底吸光度;B0为空白组吸光度。
参考DONG等
(3) |
式中,C1为实验组吸光度;C2为样品本底吸光度;C0为空白组吸光度。
参考CHEN等
(4) |
式中,D1为实验组吸光度;D2为样品本底吸光度;D0为空白组吸光度。
在阴离子交换层析柱中,氯化钠溶液中的阴离子(氯离子)将会与吸附在填料上的多糖竞争,而使用蒸馏水和不同浓度的氯化钠溶液洗脱则可以达到分离多糖的目的。
以DEAE-650M离子交换层析柱对PHLP进行分离纯化,得到洗脱曲线如

图2 多糖的DEAE-650M洗脱曲线
Fig. 2 Elution curve of crude polysaccharides on DEAE-650M
因糖类物质的极性较大,难以汽化,因此在使用气质联用分析多糖时,需要对糖进行衍生化处理,使其成为易于汽化的衍生物。本研究采用硅烷化法对5种单糖标准品进行衍生化,然后进行GC-MS分析,结果如

图3 单糖标准品的GC-MS色谱图
Fig. 3 GC-MS chromatogram of monosaccharide standard


图4 多糖PHLP-1、PHLP-2的GC-MS色谱图
Fig. 4 GC-MS chromatogram of polysaccharides of PHLP-1, PHLP-2

图5 PHLP-1、PHLP-2的FT-IR图
Fig. 5 FT-IR spectra of PHLP-1 and PHLP-2

图6 多糖PHLP-1、PHLP-2的SEM图
Fig. 6 SEM images of polysaeeharides from PHLP-1 and PHLP-2
DPPH自由基是一种常见的稳定自由基,常被用于评估抗氧化剂自由基清除能

图7 PHLP-1、PHLP-2及粗多糖对DPPH自由基的清除能力
Fig. 7 DPPH radical scavenging activities of PHLP-1, PHLP-2 and crude polysaccharides
多糖作为供氢体可以和ABTS自由基反应,通过反应后溶液吸光度值降低的大小,从而来判断多糖的抗氧化能

图8 PHLP-1、PHLP-2及粗多糖对ABTS自由基的清除能力
Fig. 8 ABTS radical scavenging activities of PHLP-1, PHLP-2 and crude polysaccharides
O

图9 PHLP-1、PHLP-2及粗多糖对O
Fig. 9 O
O

图10 PHLP-1、PHLP-2及粗多糖对O
Fig. 10 O
本研究采用醇沉法从桉木预水解液中提取半纤维素粗多糖(PHLP),并利用DEAE-650M离子交换柱对其进行分离纯化,对纯化得到的中性多糖PHLP-1和酸性多糖PHLP-2两种组分进行分析。
3.1 单糖组分结果表明,PHLP-1和PHLP-2两种多糖均由阿拉伯糖、木糖、半乳糖、甘露糖及葡萄糖组成,其摩尔比分别为0.09∶1∶0.13∶0.07∶0.35和0.1∶1∶0.03∶0.09∶0.08。
3.2 红外光谱测定表明,PHLP-1和PHLP-2均具有多糖典型的特征吸收峰,都含有吡喃环和β-糖苷键,并且PHLP-1含有α-糖苷键,而PHLP-2为不含α-糖苷键的酸性多糖。扫描电子显微镜观察PHLP-1和PHLP-2均呈无序杂乱的结构形态。
3.3 抗氧化结果表明,PHLP-1和PHLP-2及粗多糖对DPPH自由基和ABTS自由基均具有较强的清除能力,对O
参考文献
Inês S F M, António P, Dmitry V E.Production of rayon fibres from cellulosic pulps: State of the art and current developments[J]. Carbohydrate Polymers, DOI:10.1016/j.carbpol.2021.118466. [百度学术]
董吉冉.桉木预水解液中低聚木糖的纯化与精制[D]. 济南: 齐鲁工业大学, 2019. [百度学术]
DONG J R. Purification and refinement of xylo-oligosaccharides from pre-hydrolysis liquor of Eucalyptus wood[D]. Ji´nan: Qilu University of Technology, 2019. [百度学术]
董吉冉,陈嘉川,吉兴香,等. 漆酶协同活性炭处理脱除桉木预水解液中木素的研究[J]. 中国造纸,2018,37(9):9-16. [百度学术]
DONG J R,CHEN J C,JI X X,et al. Study on the Removal of Lignin from Eucalyptus Pre-hydrolysis Liquid by Laccase Combined with Activated Carbon Treatment[J]. China Pulp & Paper,2018,37(9):9-16. [百度学术]
谢明勇, 聂少平.天然产物活性多糖结构与功能研究进展[J]. 中国食品学报,2010,10(2): 1-11. [百度学术]
XIE M Y, NIE S P. A Review about the Research of Structure and Function of Polysaccharidesfrom Natural Products[J]. Journal of Chinese Institute of Food Science and Technology, 2010, 10(2): 1-11. [百度学术]
孙世荣,郭 祎,岳金权.秸秆半纤维素的分离纯化及化学改性研究进展[J]. 天津造纸,2016,38(1): 7-12. [百度学术]
SUN S R, GUO Y, YUE J Q. A Review about the separation, purification and chemical modification of straw hemicellulose[J].Tianjin Paper Making,2016,38(1): 7-12. [百度学术]
GONG X Q, ZHANG Z W, NI Y H, et al. Green and Effective Ammonium Carbonate-assisted Process for Drying Hemicellulose Obtained through Alkali Extraction of Bleached Bamboo Kraft Pulp[J]. Paper and Biomaterials, 2021, 6(1): 1-10. [百度学术]
Ahmad N, Tayyeb D, Ali I, et al. Development and Characterization of Hemicellulose-Based Films for Antibacterial Wound-Dressing Application[J]. Polymers, DOI: 10.3390/polym12030548. [百度学术]
陈 婷, 刘海棠, 刘 婧, 等. APMP废液中半纤维素的羧甲基化及生物活性研究[J]. 功能材料, 2020, 51(5): 5020-5026. [百度学术]
CHEN T, LIU H T, LIU J, et al. Carboxymethylation and bioactivity of hemicelluloses isolated from APMP waste liquor[J]. Journal of Functional Materials, 2020, 51(5): 5020-5026. [百度学术]
汪心娉,余 璟,朱瑞琦,等. 低共熔溶剂选择性溶解木质纤维原料的研究进展[J].中国造纸学报,2021,36(2): 79-86. [百度学术]
WANG X P, YU J, ZHU R Q,et al. Research Progress on Selective Dissolution of Lignocellulosic Materials in Deep Eutectic Solvents[J]. Transactions of China Pulp and Paper,2021,36(2): 79-86. [百度学术]
史瑞琴, 李大伟, 梁静静, 等.响应面法优化小球藻多糖提取工艺研究[J].食品研究与开发,2018,39(3): 18-23. [百度学术]
SHI R Q,LI D W,LIANG J J,et al. Optimization of Extraction Technology of Polysaccharides from Chlorella by Response Surface Methodology[J].Food Research and Development,2018,39(3): 18-23. [百度学术]
任珍芸,陈晓航,王 玺, 等.硫酸-咔唑微孔板法检测肺炎链球菌荚膜多糖中糖醛酸含量[J].微生物学免疫学进展,2017, 45(2): 36-41. [百度学术]
REN Z Y, CHEN X H, WANG X, et al.Determination of uronic acid content in pneumococcalpolysaccharide by sulfate-carbazole method in microplate[J].Progress in Microbiology and Immunology,2017, 45(2): 36-41. [百度学术]
Guadalupe Z, Martínez-Pinilla O, Garrido Á,et al. Quantitative determination of wine polysaccharides by gas chromatography-mass spectrometry(GC-MS) and size exclusion chromatography(SEC)[J]. Food Chemistry, 2012, 131(1): 367-374. [百度学术]
LUO A X,HE X J,ZHOU S D,et al.Purification, composition analysis and antioxidantactivity of the polysaccarides from Dendrobium nobile Lindl[J].Carbohydrate Polymers,2009,79(4):1014-1019. [百度学术]
冯 炘, 李艳红, 解玉红. 发酵秸秆多糖的分离纯化及抗氧化活性测定[J]. 食品科技, 2019, 44(2): 203-208. [百度学术]
FENG X, LI Y H, XIE Y H. Separation, purification and antioxidant activity of fermentation ofstraw polysaccharides[J].Food Science and Technology, 2019, 44(2): 203-208. [百度学术]
XU G Y, LIAO A M, HUANG J H, et al.Evaluation of structural, functional, and anti-oxidant potential of differentially extracted polysaccharides from potatoes peels[J].International Journal of Biological Macromolecules, 2019, 129: 778-785. [百度学术]
DONG W J, CHENG K, HU R S, et al. Effect of Microwave Vacuum Drying on the Drying Characteristics,Color, Microstructure, and Antioxidant Activity of Green Coffee Beans[J]. Molecules, 2018, 23(5): 1146-1162. [百度学术]
CHEN Y X, LIU X Y, XIAO Z, et al. Antioxidant activities of polysaccharides obtained from Chlorella pyrenoidosa via different ethanol concentrations[J].International Journal of Biological Macromolecules, 2016, 91: 505-509. [百度学术]
胡爱军, 李 杨, 郑 捷, 等. 鹰嘴豆非淀粉多糖的分离纯化及结构表征[J]. 食品科学,2019, 40(8): 22-26. [百度学术]
HU A J, LI Y, ZHENG J, et al.Separation, Purification and Structural Analysis of Non-starch Polysaccharides from Chickpea Seeds[J].Food Science,2019, 40(8): 22-26. [百度学术]
LEI S. Bioactivities, isolation and purification methods ofpolysaccharides from natural products: a review[J]. Interna⁃tionalJournal of Biological Macromolecules,2016, 92: 37-48. [百度学术]
龚 雯, 唐 婕,韦雅渊, 等.金花茶多糖分离纯化、结构表征及其体外抗氧化性[J].食品与机械, 2021, 37(6): 184-190. [百度学术]
GONG W, TANG J, WEI Y Y, et al.Isolation, purification, structural characterization of polysaccharide from Camellia Nitidissima Chi and its antioxidant activities in vitro[J]. Food & Machinery, 2021, 37(6): 184-190. [百度学术]
于少朋,曾 锐, 韩 珍, 等.粗茎秦艽多糖GCP-1的分离纯化、结构表征及抗炎活性评价[J].中草药, 2021, 52(3): 635-642. [百度学术]
YU S P, ZENG R, HAN Z, et al. Isolation, purification, structure characterization,and anti-inflammatory activity of Gentiana crassicaulis polysaccharides[J]. Chinese Traditional and Herbal Drugs, 2021, 52(3): 635-642. [百度学术]
张志宏, 邢 娜, 彭东辉, 等.黄瓜子多糖的分离、纯化和体外抗氧化活性研究[J].中国药房,2021,32(4):432-438. [百度学术]
ZHANG Z H, XING N, PENG D H, et al.Study on Isolation,Purification and in vitro Antioxidant Activity of the Polysaccharides from Cucumis satiuus[J].China Pharmacy, 2021,32(4): 432-438. [百度学术]
郝 霞, 李 科, 王桂臻, 等. 黄芪药渣中阿拉伯木聚糖提取、分离和结构初步分析[J].山西医科大学学报, 2016, 47(4): 338-343. [百度学术]
HAO X, LI K, WANG G Z,et al.Extraction,separation and structural analysis ofarabinoxylans from the residue of Astragalus root[J]. Journal of Shanxi Medical University,2016, 47(4): 338-343. [百度学术]
尹震花, 张娟娟, 陈 林, 等. 补骨脂多糖的分离纯化、结构鉴定及其对RAW264.7巨噬细胞活力的影响[J]. 食品科学, 2019, 40(24): 27-32. [百度学术]
YIN Z H, ZHANG J J, CHEN L,et al.Purification, Structural Identification and Effect on Cell Viability of RAW264.7 Macrophages ofPolysaccharides from Psoralea corylifolia L. Fruits[J].Food Science,2019, 40(24): 27-32. [百度学术]
Wang L, Liu H M, Qin G Y. Structure characterization and antioxidant activity ofpolysaccharides from Chinese quince seed meal[J]. Food Chemistry, 2017,234: 314-322. [百度学术]
Li B, Zhang N, Wang D X, et al. Structural analysis and antioxidant activities ofneutral polysaccharide isolated from Epimedium koreanum Nakai[J].Carbohydrate Polymers, 2018, 196: 246-253. [百度学术]
魏晨业, 包晓玮, 王 娟, 等.沙棘多糖分离纯化及抗氧化活性[J].食品科学, 2021, 42(4): 227-232. [百度学术]
WEI C Y, BAO X W, WANG J, et al.Isolation, Purification and Antioxidant Activity of Polysaccharides from the Fruit of Hippophae rhamnoides[J].Food Science,2021, 42(4): 227-232. [百度学术]
袁清霞. 桑叶多糖分离纯化、结构分析及生物活性研究[D]. 南京:南京农业大学, 2016. [百度学术]
YUAN Q X. Isolation, purification, structure and Bioactivity of Polysaccharids from Mulberry(MORUS ALBA L.) Leaves[D]. Nanjing: Nanjing Agricultural University,2016. [百度学术]
Liu X G, Bian J, Li D Q, et al. Structural features, antioxidant and acetylcholinesterase inhibitory activities of polysaccharides from stem ofPhysalis alkekengi L[J]. Industrial Crops and Products, 2019, 129(1): 654-661. [百度学术]
Chen H, Zhang M, Qu Z, et al. Antioxidant activities of different fractions of polysaccharide conjugates from green tea(Camellia Sinensis)[J]. Food Chemistry, 2008, 106(2): 559-563. [百度学术]
商佳琦, 邹丹阳, 滕翔宇, 等. 5种食用菌多糖的结构特征及抗氧化活性对比[J].食品工业科技, 2020,41(15):77-83+89. [百度学术]
SHANG J Q, ZOU D Y, TENG X Y, et al. Structural Characterization and Antioxidant Activity ofFive Kinds of Edible Fungus Polysaccharides[J].Science and Technology of Food Industry, 2020,41(15):77-83+89. [百度学术]
Sun Y X, Liu J C, Kennedy J F. Purification, composition analysis and antioxidant activity of different polysaccharide conjugates(APPs) from the fruiting bodies of Auricularia polytricha[J]. Carbohydrate Polymers, 2010, 82(2): 299-304. [百度学术]
Wang M C, Zhu P L, Zhao S W, et al. Characterization, antioxidant activity and immunomodulatoryactivity of polysaccha⁃rides from the swollen culms of Zizania latifolia[J]. International Journal of Biological Macromolecules, 2017, 95: 809-817. [百度学术]
Lin C L, Wang C C, Chang S C, et al. Antioxidative activity of polysaccharide fractions isolated from Lycium barbarum Linnaeus[J]. International Journal of Biological Macromolecules, 2009, 45(2): 146-151. [百度学术]
Jin L, Guan X, Liu W, et al. Characterization and antioxidant activity of a polysaccharide extracted from Sarcandra glabra[J]. Carbohydrate Polymers, 2012, 90(1): 524-532. [百度学术]
HU H B, LIANG H P, LI H M, et al. Isolation, purification,characterization and antioxidant activity of polysaccharides from the stem barks of Acanthopanax leucorrhizus[J]. Carbohydrate Polymers, 2018, 196: 359-367. [百度学术]
Fan J, Feng H B, Yu Y, et al. Antioxidant activities of the polysaccharides of Chuanminshen violaceum[J]. Carbohydrate Polymers, 2017, 157: 629-636. CPP [百度学术]