摘要
本研究将Ag/纤维素和氧化石墨烯(GO)/纤维素均匀混合,利用抽滤工艺和水合肼还原法制备Ag/RGO/纤维素复合纸。利用X射线光电子能谱仪和扫描电子显微镜表征了Ag/RGO/纤维素复合纸的结构和形貌,并研究了复合纸的导电性、机械强度、热稳定性和抗菌活性。结果表明,Ag/纤维素和RGO/纤维素紧密结合在一起,Ag/RGO/纤维素复合纸的电导率为0.042 S/cm,低于Ag/纤维素纸的电导率。Ag/RGO/纤维素复合纸的杨氏模量和断裂伸长率分别为489 MPa和4.5%,相比纤维素纸分别提高了12.9%和7.1%;第二阶段热解开始温度为300℃,相比纤维素纸提高了40℃。Ag/RGO/纤维素复合纸具有优良的抗菌活性,对大肠杆菌和金黄色葡萄球菌的抑菌圈直径分别为14 mm和9 mm。
关键词
随着电子技术的快速发展,柔性电子元器件的应用越来越广,柔性导电材料也得到越来越多的关注。纤维素具有价格低廉、柔韧性好、可生物降解等特点,以纤维素为基体制备柔性纸基导电材料,符合绿色环保的要求,也有利于扩大纸基材料在柔性电子元器件领域的应用范
针叶木浆(天津市木精灵生物科技有限公司),石墨(南京先丰纳米材料科技有限公司),NaNO3、H2SO4、NaOH、H2O2、KMnO4(分析纯,国药集团化学试剂有限公司),AgNO3(分析纯、阿拉丁试剂公司),氨水(分析纯,天津市大茂化学试剂有限公司),无水葡萄糖(分析纯,上海伯奥生物科技有限公司),聚丙烯酰胺、水合肼(分析纯,西陇科学股份有限公司)。
将针叶木浆置于0.1 mol/L的NaOH溶液中煮沸20 min后取出,用去离子水清洗干净,加水疏解得到纤维素分散液,通过抽滤、90℃干燥10 min得到纤维素纸。
将0.5 g AgNO3溶于50 mL去离子水中,逐滴滴加0.1 mol/L的氨水溶液并持续搅拌,直到褐色沉淀溶解,得到银氨溶液。将新配制的银氨溶液加入上述制备好的纤维素分散液中,遮光环境下搅拌10 min,然后加入葡萄糖并继续在遮光环境下搅拌30 min,水洗过滤,得到Ag/纤维素纤维。取一定量的Ag/纤维素纤维,抽滤、90℃下干燥10 min得到Ag/纤维素
将250 mL的烧杯放入冰水浴中,加入100 mL质量分数为98%浓硫酸,然后加入3 g石墨粉和1.5 g NaNO3,搅拌30 min后缓慢加入9 g KMnO4,继续搅拌30 min。将烧杯转移到35℃的恒温水浴锅中,搅拌30 min加入200 mL去离子水,将烧杯转移到98℃的恒温油浴锅中,搅拌20 min后用35℃的去离子水稀释,然后加入25 mL质量分数为30%的H2O2,过滤、清洗3次后在70℃下真空干燥12 h,得到氧化石墨烯(GO)。
将GO加入到去离子水中,超声分散60 min,得到GO分散液。将GO分散液加入到上述制备好的纤维素分散液中,加入质量分数2%的聚丙烯酰胺,搅拌30 min,水洗过滤得到GO/纤维素纤维。取一定量的GO/纤维素纤维,抽滤、干燥得到GO/纤维素纸。将GO/纤维素纸浸入水合肼溶液,然后转移到高压釜中,90℃下反应30 min,自然冷却后取出,水洗过滤,干燥后得到RGO/纤维素纸。
采用S4800型扫描电子显微镜(SEM,日本日立公司)表征样品的形貌;采用EscaLab Xi型X射线光电子能谱仪(XPS,美国赛默飞世尔科技公司)表征样品的元素和结构;采用TGA Q500型热重分析仪(TG,美国TA公司)表征样品的热稳定性能,加热速率为10℃/min,测试气体氛围为空气;采用INSTRON 5565型万能测试机(美国Norwood公司)表征样品的机械强度,样品尺寸为100 mm×15 mm,选用2000 N的沉重感应器,拉伸速率为4 mm/min。采用ST-2258C型多功能数字式四探针测试仪(苏州晶格电子有限公司)测试样品的电导率。
抗菌性能表征:以革兰氏阴性菌大肠杆菌和革兰氏阳性菌金黄色葡萄球菌评价样品的抗菌活性。选择溶菌肉汤(LB肉汤)为营养液,在37℃环境下培养14 h,将10 μL细菌接种物添加到1 mL去离子水中,得到1




图1 Ag/GO/纤维素复合纸和Ag/RGO/纤维素复合纸的XPS谱图
Fig. 1 XPS spectra of Ag/GO/cellulose composite paper and Ag/RGO/cellulose composite paper


图2 纤维素复合纸的SEM图
Fig. 2 SEM images of cellulose composite papers

图3 不同纤维素纸和纤维素复合纸的应力应变曲线
Fig. 3 Stress-strain curves of different cellulose papers and cellulose composite papers

图4 不同纤维素纸和纤维素复合纸的热失重曲线
Fig. 4 Thermo-gravimetric curves of different cellulose papers and cellulose composite papers
将Ag/纤维素和氧化石墨烯(GO)/纤维素混合并利用水合肼还原制备Ag/RGO/纤维素复合纸。Ag/纤维素和RGO/纤维素紧密结合在一起,有利于形成导电通路。Ag/RGO/纤维素复合纸具有较好导电性,面电导率为0.042 S/cm,低于Ag/纤维素纸的面电导率。但Ag/RGO/纤维素复合纸机械强度、热稳定性和抗菌活性相比Ag/纤维素纸有所提升,有利于增加其在大气环境下的使用寿命。
参考文献
PROF BAOJUN DING. Tailorable and Flexible Conducting Films via Interfacial Modification of Polymer Fibers[J]. Chemistry Select, 2018, 3(48) : 13736-13742. [百度学术]
WENNA ZHANG. Effect of chalcogen substitution on aqueous dispersions of poly(3,4-ethylenedioxythiophene)s:poly(4-styrenesul⁃fonate) and their flexible conducting films[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(21) : 18566-18572. [百度学术]
李禹欣,胡 飞.淀粉基底银纳米线柔性透明导电膜的合成及性能[J].精细化工,2019,36(10):2101-2108. [百度学术]
LI Y X, HU F. Synthesis and Properties of Starch Substrate Silver Nanowires Flexible Transparent Conductive Films[J]. Fine Chemicals, 2019, 36(10): 2101-2108. [百度学术]
MAHMOUD MOUSSA. Compact, flexible conducting polymer/graphene nanocomposites for supercapacitors of high volumetric energy density[J]. Composites Science and Technology, 2018, 160 : 50-59. [百度学术]
LINA MA. Flexible and freestanding electrode based on /graphene/bacterial cellulose paper for supercapacitor[J]. Composites Science and Technology, 2016, 137 : 87-93. [百度学术]
邢健雄,郑 凯,韩尊强,等.纤维素基电极材料在柔性超级电容器中的应用研究进展[J].林产化学与工业,2019,39(4):9-17. [百度学术]
XIN J X, ZHENG K, HAN Z Q,et al. Research Progress on Application of Cellulose-based Materials as Electrode in Flexible Supercapacitor[J]. Chemistry and Industry of Forest Products, 2019, 39(4): 9-17. [百度学术]
秦文峰,符佳伟,王新远,等.多壁碳纳米管导电纸/碳纤维复合材料的制备及电磁屏蔽性能研究[J].化工新型材料,2020,48(9):68-71. [百度学术]
QIN W F, FU J W, WANG X Y, et al. Preparation and electromagnetic shielding property of MWCNTs conductive paper/CF composite[J]. New Chemical Materials, 2020,48(9):68-71. [百度学术]
ZHANG X F. Highly transparent graphene oxide/cellulose composite film bearing ultraviolet shielding property[J]. International Journal of Biological Macromolecules, 2020, 145 : 663-667. [百度学术]
XIAO X R. Enhancing Mechanical Properties of Flexible Graphene/ Cellulose Conductive Paper by Chemically Modifying Cellulose Fibers[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(10) : 7090-7094. [百度学术]
LUO H L. Layer-by-Layer Assembled Bacterial Cellulose/Graphene Oxide Hydrogels with Extremely Enhanced Mechanical Properties[J]. Nano-Micro Letters, 2018, 10(3) : 1-10. [百度学术]
FILIPE V FERREIRA. Cellulose nanocrystal‐based poly(butylene adipate-co-terephthalate) nanocomposites covered with antimicr⁃obial silver thin films[J]. Polymer Engineering & Science, 2019, 59(2) : 356-365. [百度学术]
成德华,王绪美,马庆雪,等.负载银纳米簇功能纸的制备及其抗菌性能研究[J].中国造纸,2021,40(2):20-25. [百度学术]
CHENG D H, WANG X M, MA Q X,et al. Preparation and Antibacterial Properties of Functional Paper Loaded with Silver Nanoclusters[J]. China Pulp & Paper, 2021,40(2):20-25. [百度学术]
ZHOU M J, HE J X, WANG L D. Synthesis of carbonized-cellulose nanowhisker/FeS2@ reduced graphene oxide composite for highly efficient counter electrodes in dye-sensitized solar cells [J]. Solar Energy, 2018, 166: 71-79. [百度学术]
WANG X M, GAO W R, XU S P, et al. Luminescent fibers:In situ synthesis of silver nanoclusters on silk via ultraviolet light-induced reduction and their antibacterial activity [J]. Chemical Engineering Journal,2012,210:585-589. [百度学术]
Hessam Ramezani, Tayebeh Behzad, Ruhollah Bagheri. Synergistic effect of graphene oxide nanoplatelets and cellulose nanofibers on mechanical, thermal, and barrier properties of thermoplastic starch[J]. Polymers for Advanced Technologies, 2020, 31(3) : 553-565. CPP [百度学术]