摘要
本研究以速生杨木边材木片为原料进行自水解预处理,将无机熔盐水合物和自水解预处理后的杨木片(APW)加入盐酸溶液中浸渍,经冷冻干燥、碳化、酸洗、水洗及干燥后得到木质生物质基多孔碳材料。探究了APW的不同无机熔盐水合物活化处理对多孔碳材料物理结构性能的影响,测试了将其作为超级电容器电极材料的电化学性能。结果表明,在盐酸溶液中,无机熔盐水合物ZnCl2和 ZnCO3活化处理均有利于提高木质生物质基多孔碳材料的电化学性能,且前者比后者的作用效果更强,ZnCl2活化处理制备的木质生物质基多孔碳材料无序结构更多;当用作超级电容器中的电极材料时,活化剂总质量一定,以ZnCl2和ZnCO3组合制备的多孔碳材料的电化学性能更具有优势,在0.2 A/g电流密度下,所制备的电极材料质量比容量可达到143.20 F/g;在2.0 A/g电流密度下,其循环5000次的电容保持率为99.90%;另外,在10 mV/s的扫描速率下,其循环伏安曲线保持了良好闭合的近似矩形形状。
目前,世界人口和社会经济不断增长,能源的需求量日益增加,能源危机和环境问题成为本世纪的两大严峻挑战。为了更好地满足未来社会清洁、经济、高效发展的需求,新的节能材料的制备与绿色能源的研究已经逐步成为世界关注的焦点。全力发展绿色可再生新能源和新型储能技术的二者结合应用成为一个至关重要的研究方
作为一种可再生的天然生物质资源——木材,主要由木素、纤维素和半纤维素等组成,因其具有天然的分级多孔通道和丰富的交联网络结构,在电化学储能领域有着更广泛的应
由于木材组成复杂,木素、半纤维素和纤维素相互缠绕,使得通过浸渍、活化、碳化得到的木质生物质基多孔碳材料孔径较小且结构致密,不利于离子的传输和储存,阻碍了其在电化学储能领域的应
然而,为了充分利用木材内部的特征结构,最好选择一种能够快速溶解纤维素却对木素没有影响的活化剂。根据文献报
本研究采用具有生长周期短、纤维平均长度均匀、导管系统发达、体积孔隙率高且密度小等特
杨木为速生杨107(黑杨属),取自河北省。将杨木剥皮后,茎杆部分在室温下风干至水分约10%。然后根据文献[
在配备有离心泵用于反应液体循环的6 L蒸煮器(美国M/K Systems Inc.)中进行自水解预处理。按照固液比为1∶10(kg/L),将约50 g干燥的杨木片和预热至90℃的去离子水装入蒸煮器中充分混合。盖上双缸蒸煮锅的盖子,保持自水解预处理的体系密封,开始进行自水解预处理。详细的处理步骤如文献[
取一定块数的木片(风干质量约3.0 g)称量质量后放入烧杯,按照1∶50的固液比加入1.5 mol/L的盐酸溶液,浸泡1 h后加入无机熔盐水合物ZnCl2或ZnCO3或ZnCl2与ZnCO3的混合物(质量比1∶1),封口后在常温下超声波处理12 h,取出木片后冷冻干燥8 h,再将这些经过不同无机熔盐水合物单独或组合处理后的木片放入充满氩气的管式炉中,以5℃/min的升温速率升至1000℃后保温6 h,降至室温后经酸洗、水洗及干燥后得到多孔碳材料。按照不同处理方式对所得的多孔碳材料命名,如
多孔碳材料的晶型结构通过X射线衍射仪和拉曼光谱仪测定。X射线衍射仪采用Cu Kα,λ=0.15405 nm的照射源,扫描范围2θ=10°~70°,扫描速度10°/min。拉曼光谱的激发光源为514 nm。

图1 APW制备的多孔碳材料的FE-SEM图
(a)为APW-C纵截面上纹孔的放大图;(b)为APW-ZnCO3-ZnCl2-HCl-C纵截面上纹孔的放大图;(c)为APW-C横截面上孔道的放大图;
(d)、(e)、(f)、(g)分别是APW-C、APW-ZnCl2-HCl-C、APW-ZnCO3-HCl-C和APW-ZnCO3-ZnCl2-HCl-C样品在其横截面类似(c)所示位置上孔道壁的放大图。

图2 多孔碳材料拉曼光谱图

图3 多孔碳材料XRD图谱
由于不同的官能团在碳化过程中,脱除的时间和方式不一样,木质生物质原料中官能团的变化对木质生物质基碳材料的多孔性具有重要影

图4 多孔碳材料的N2吸附-脱附曲线和孔径分布图
从

图5 多孔碳材料循环伏安曲线
为了进一步研究AP-IMSHP样品的电化学性能,以NAP-IMSHP样品作为参照,在一定电流密度下对样品进行了计时电位测试(GCD)、电化学交流阻抗谱测试(EIS)和多孔碳循环稳定性能测试,测试结果如

图6 多孔碳材料GCD曲线

图7 多孔碳材料的EIS曲线

图8 APW-ZnCl2-ZnCO3-HCl-C的循环稳定性能曲线
通过
从
本研究采用常规速生杨木边材木片为原料,在自水解预处理后经不同无机熔盐水合物活化处理,成功制备了具有自支撑结构的可用于超级电容器电极的多孔碳材料。该材料具有低电阻、较高的比容量和较好的循环稳定性能。探讨了ZnCl2和ZnCO3两种不同无机熔盐水合物以及这两种活化剂组合处理对改善自水解后木质生物质基多孔碳材料电化学性能的影响。
3.1 ZnCl2和ZnCO3组合处理对自水解后制备的木质生物质基多孔碳材料的电化学性能改善最为显著。在0.2 A/g的电流密度下,比容量高达143.20 F/g,比表面积达到928.6
3.2 ZnCl2和ZnCO3活化处理均有利于提高自水解后制备的木质生物质基多孔碳材料的比表面积,但前者比后者的作用效果更强,比表面积可达到991.2
3.3 无机熔盐水合物处理会改变碳的晶体结构,其中ZnCl2对自水解后制备的木质生物质基多孔碳材料无序度的影响大于ZnCO3。
参考文献
Kathia Pinzón .Dynamics between energy consumption and economic growth in Ecuador: A granger causality analysis[J].Economic Analysis and Policy,2018,57: 88. [百度学术]
吴 春.超级电容器用新型多孔碳材料的制备及其电化学性能研究[D].湘潭:湘潭大学,2014. [百度学术]
Wu Chun.Preparation and electrochemical properties of new porous carbon materials for supercapacitors [D].Xiangtan: Xiangtan University,2014. [百度学术]
董路影.《中国可再生能源展望2018》及《可再生能源市场报告2018》成果联合发布[J].中国能源,2018,40(12):44. [百度学术]
Dong Lu-ying. China Renewable Energy Outlook 2018 and Results of Renewable Energy Market Report 2018[J].China Energy, 2018, 40(12):44. [百度学术]
Gong You-ning,Li De-long,Luo Cheng-zhi,et al.Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors[J]. Green Chemistry,2017,19: 4132. [百度学术]
呼延永江,高 帆.石墨烯掺杂对木质素基碳纳米纤维电化学性能影响的研究[J].中国造纸学报,2020,35(1):33. [百度学术]
HUYAN Yongjiang,GAO Fan.Effects of Graphene Doping on the Electrochemical Properties of Lignin-Based Carbon Nanofibers[J]. Transactions of China Pulp and Paper,2020,35(1):33. [百度学术]
Chen Chao-ji, Hu Liang-bing.Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry[J].Accounts of Chemical Research,2018,51(12): 3154. [百度学术]
Song Hui-yu,Xu Shao-mao,Li Yi-ju,et al.Hierarchically porous, ultrathick, "breathable" wood-derived cathode for lithium-oxygen batteries[J].Advanced Energy Materials,2017,8(4): 1701203. [百度学术]
Peng Xin-wen,Zhang Lei,Chen Zhong-xin, et al.Hierarchically porous carbon plates derived from wood as bifunctional orr/oer electrodes[J]. Advanced Materials,2019,31(16): 1900341. [百度学术]
Tang Zi-jie,Pei Zeng-xia,Wang Zi-feng,et al.Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction[J].Carbon,2018,130: 532. [百度学术]
Chen Ze-hong,Zhuo Hao,Hu Yi-jie,et al.Self-biotemplate preparation of hierarchical porous carbon with rational mesopore ratio and high oxygen content for an ultrahigh energy-density supercapacitor[J]. ACS Sustainable Chemistry & Engineering,2018,6(5):7138. [百度学术]
Zhang Hong-lei,Hou Qing-xi,Liu Wei,et al.Improved diffusivity of naoh solution in autohydrolyzed poplar sapwood chips for chemi-mechanical pulp production[J].Bioresource Technology,2018,259: 61. [百度学术]
Jiang Xiao-ya,Hou Qing-xi,Liu Wei,et al. Improved permeability of autohydrolyzed poplar sapwood against sodium hydroxide for cmp production[J]. Holzforschung,2018,72(5):347. [百度学术]
Jiang Xiao-ya,Hou Qing-xi,Liu Wei,et al. Hemicelluloses removal in autohydrolysis pretreatment enhances the subsequent alkali impregnation effectiveness of poplar sapwood[J].Bioresource Technology,2016,222: 361. [百度学术]
江骁雅,陈雪峰,侯庆喜,等.自水解后杨木边材木片化学组分和结构特性的变化及其对木片碱液浸渍的影响[J].中国造纸学报,2018,33(1):15. [百度学术]
JIANG Xiaoya,CHEN Xuefeng,HOU Qingxi,et al. Changes of Chemical Composition and Structural Characteristics of Poplar Sapwood Chips After Autohydrolysis and Their Effects on the Subsequent Alkali Impregnation[J].Transactions of China Pulp and Paper,2018,33(1):15. [百度学术]
Moodley P,Kana E B G.Microwave-assisted inorganic salt pretreatment of sugarcane leaf waste: Effect on physiochemical structure and enzymatic saccharification[J].Bioresource Technology,2017,235:35. [百度学术]
Lopez-Linares J C,Romero I,Moya M,et al.Pretreatment of olive tree biomass with FeCl3 prior enzymatic hydrolysis[J].Bioresource Technology,2013,128:180. [百度学术]
Kang K E,Park D H,Jeong G T.Effects of inorganic salts on pretreatment of miscanthus straw[J]. Bioresource Technology,2013,132:160. [百度学术]
Li Ning,Li Yan-ding,Yoo Chang-geun,et al. An uncondensed lignin depolymerized in the solid state and isolated from lignocellulosic biomass: A mechanistic study[J].Green Chemistry,2018,20(18): 4224. [百度学术]
Bi Zhi-hao,Lai Bin,Zhao Yi,et al.Fast disassembly of lignocellulosic biomass to lignin and sugars by molten salt hydrate at low temperature for overall biorefinery[J]. ACS Omega,2018,3(3):2984. [百度学术]
Yoo Chong-geun,Zhang Shu-ting,Pan Xue-jun.Effective conversion of biomass into bromomethylfurfural, furfural, and depolymerized lignin in lithium bromide molten salt hydrate of a biphasic system[J]. RSC Advances,2017,7(1): 300. [百度学术]
Yang Xiao-hui,Li Ning,Lin Xu-liang,et al.Selective cleavage of the aryl ether bonds in lignin for depolymerization by acidic lithium bromide molten salt hydrate under mild conditions[J].Journal of Agricultural and Food Chemistry,2016,64(44): 8379. [百度学术]
Dominguez E,Romani A,Domingues L,et al. Evaluation of strategies for second generation bioethanol production from fast growing biomass paulownia within a biorefinery scheme[J]. Applied Energy,2017,187:777. [百度学术]
Zhu W,Houtman C J,Zhu J Y,et al. Quantitative predictions of bioconversion of aspen by dilute acid and sporl pretreatments using a unified combined hydrolysis factor (CHF)[J].Process Biochemistry,2012,47(5): 785. [百度学术]
张晓华.生物质基炭材料的结构调控及其电化学性能研究[D].太原:太原理工大学,2019. [百度学术]
Zhang X H. Structural regulation and electrochemical properties of biomass-based carbon materials [D]. Taiyuan: Taiyuan University of Technology,2019. [百度学术]
Stefanidis S D,Kalogiannis K G,Iliopoulou E F,et al. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin[J].Journal of Analytical and Applied Pyrolysis,2014,105: 143. [百度学术]
Liu Qian,Wang Shu-rong,Zheng Yun,et al. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J].Journal of Analytical and Applied Pyrolysis,2008,82(1): 170. [百度学术]
Suhas,Carrott P J M,Carrott M M L R. Lignin from natural adsorbent to activated carbon: a review[J].Bioresource Technology,2007,98(12): 2301. [百度学术]
Luo Wen-hao,Cao Wen-xiu,Bruijnincx C A,et al. Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules[J]. Green Chemistry,2019,21(14): 374. [百度学术]
Huang Guang-xu,Geng Qian-hao,Xing Bao-lin,et al. Manganous nitrate-assisted potassium hydroxide activation of humic acid to prepare oxygen-rich hierarchical porous carbon as high-performance supercapacitor electrodes[J]. Journal of Power Sources,2020(449): 227506. [百度学术]
Li Ai-jun,Chuan Xiu-yun ,Yang Yang,et al. Influence of activated condition on the structure of diatomite-templated carbons and their electrochemical properties as supercapacitors[J]. Electrochemistry, 2017, 85(11): 708. [百度学术]
Enock T K,King'ondu C K,Pogrebnoi A,et al. Biogas-slurry derived mesoporous carbon for supercapacitor applications[J]. Materials Today Energy,2017(5): 126. [百度学术]
Chang Bin-bin,Guo Yan-zhen,Li Yan-chun,et al.Graphitized hierarchical porous carbon nanospheres: Simultaneous activation/graphitization and superior supercapacitance performance[J].Journal of Materials Chemistry A,2015,3(18): 9565. [百度学术]
赵世辉,李友明,万小芳,等.微生物燃料电池降解木素磺酸盐并同步产电[J].中华纸业,2011,32(6):26. [百度学术]
Zhao Shi-hui,Li You-ming,Wan Xiao-fang,et al. Degradation of lignin sulfonate and synchronous electricity generation by microbial fuel cells[J]. China Pulp & Paper Industry,2011,32(6): 26. [百度学术]
王春明.《电化学原理和方法》用于研究生教学的体会[J].高等理科教育,2002(2):113. [百度学术]
Wang Chun-ming. Application of electrochemistry principles and methods in graduate education[J]. Higher Science Education,2002(2): 113. [百度学术]
Chen Xuli,Rajib Paul,Dai Liming. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review,2017(3): 17. CPP [百度学术]