摘要
研究了水热-二元催化乙醇法高效分离麦草3种主要组分的效果,然后采用醇沉法和稀释沉淀法分别分离提取出半纤维素和木质素。并通过高效阴离子色谱仪、傅里叶变换红外光谱仪、核磁共振波谱仪对分离物的结构进行了表征。结果表明,水热-二元催化乙醇法分离麦草3种主要组分方法可行,且提取效果较好。醇沉法半纤维素提取率为38.1%,稀释沉淀法木质素提取率为55.5%,粗纤维素得率为40.7%。分离得到的半纤维素聚糖的主链由D-吡喃式木糖以(1,4)-β-糖苷键连接形成,支链为4-O-甲基-α-D-吡喃式葡萄糖醛酸基、α-L-呋喃式阿拉伯糖基和乙酰基。分离物木质素具有典型的G-S-H型结构,且木质素中S型木质素含量多于G型木质素。
关键词
木质纤维素生物质是地球陆生生态系统中最普遍的低成本、可再生生物质原料,但其中89%木质纤维尚未被充分利
已有的研究表明,水热-乙醇法对半纤维素的分离效果非常好,但是水热处理段使木质素发生形态和结构上的变化,导致了乙醇处理过程中木质素的分离效果极
麦草,水分10%,取自陕西某地,粉碎后筛取40~60目组分备
木质素为酸溶木质素和酸不溶木质素的总和,其中酸不溶木质素含量为16.09%,酸溶木质素为2.09%;纤维素含量采用硝酸-乙醇法测定。
PARR-5500 轻便型台式反应釜,美国Parr公司;W201 恒温水浴锅,上海申生科技有限公司;SHB-III 循环水式多用真空泵,巩义市予华仪器有限责任公司;DHG-9030A 电热鼓风干燥箱,上海一恒科学仪器有限公司;BS210S 分析天平,北京赛多利斯天平有限公司;DL-1万用电炉,北京中兴伟业仪器有限公司;SX-4-10马弗炉,天津泰斯特仪器有限公司;ICS 5000高效阴离子色谱仪,德国Dionex公司;VERTEX70傅里叶变换红外光谱仪,德国Bruker公司;FD-1A-50冷冻干燥机,北京博医康实验仪器有限公司;RE-52AA旋转蒸发仪,上海亚荣生化仪器厂;TG16-WS台式高速离心机,湖南湘仪实验室仪器开发有限公司;AVIII 400 MHz核磁共振波谱仪,德国Bruker公司。
称取一定量麦草与水按总固液比为1∶24(g∶mL)均匀混合,置于高压反应釜中,升温速率为7℃/min,升温至180℃,保温40 min。过滤分离,得到固相产物和水解液。用H2SO4调节水解液pH值至2,离心分离上清液,再经旋转蒸发仪蒸发浓缩至一定体积,加入乙醇溶剂沉
将水热固相产物与质量分数50%乙醇溶液混合,在质量分数3% H2O2和质量分数3% NaOH二元催化下,按总固液比为1∶16(g∶mL),置于高压反应釜中,升温速率为7℃/min,升温至190℃,保温90 min,过滤分离固相产物,并用55%乙醇溶液和去离子水洗涤,干燥得到粗纤维素;液相产物通过稀释沉淀
粗纤维素得率、木质素与半纤维素脱除率和提取率分别按式(1)~
(1) |
(2) |
(3) |
(4) |
(5) |
式中,m1为粗纤维素质量,g;m2为原料质量,g;m3为粗纤维素中木质素质量,g;m4为原料中的木质素质量,g;m5为木质素分离物质量,g;m6为粗纤维素中的半纤维素质量,g;m7为原料中的半纤维素质量,g;m8为半纤维素分离物质量,g。
取1 mL水解液稀释适宜倍数,再经0.22 μm针孔过滤器过滤后,采用高效阴离子色谱仪,以Dionex CarboPacTM PA200(3 mm × 250 mm)为分析柱,以CarboPacTM PA200(3 mm × 50 mm)为保护柱,柱温30℃,取样25 μL,淋洗液分别为100 mmol/L NaOH、500 mmol/L NaOAc溶液和蒸馏水,以0.3 mL/min的流速梯度淋洗,测定水解液中低聚木糖(DP=2~6)及半纤维素单糖(如木糖、葡萄糖、阿拉伯糖、半乳糖、鼠李糖、岩藻糖)的含
将木质素分离物以及半纤维素分离物研成粉末,与KBr压片。由傅里叶变换红外光谱仪(FT-IR)测量其红外光
水热处理对半纤维素的分离效果如

图1 水热法对半纤维素的分离效果
得率的计算是基于原料中的半纤维素。
水热-二元催化乙醇法对麦草3种主要组分分离效果如

图2 水热-二元催化乙醇法与水热-乙醇法对麦草3种主要组分的分离效果
半纤维素分离物的FT-IR谱图如

图3 半纤维素分离物的FT-IR谱图
采用NMR进一步研究半纤维素分离物的结构,

图4 半纤维素分离物
半纤维素分离物

图5 半纤维素分离物
木质素分离物的FT-IR谱图如

图6 木质素分离物的FT-IR谱图
本课题研究了水热-二元催化乙醇法对麦草纤维素、半纤维素和木质素组分的分离效果,并对半纤维素分离物和木质素分离物的化学结构进行了表征。
3.1 水热-二元催化乙醇法可以实现麦草组分的高效分离,对半纤维素的脱除率为91.5%,醇沉法半纤维素提取率为38.1%;稀释沉淀法木质素提取率为55.5%,木质素的脱除率为85.6%,相比水热-乙醇法,木质素脱除率提高了52.6%,粗纤维素的得率为40.7%;另外,半纤维素主要由第一步水热法脱除,且水热法处理后半纤维素的4种存在形式分别为:醇沉法得到半纤维素聚糖38.1%,水解液中未沉淀出来的低聚木糖以及单糖的含量28.0%,残留在固相产物的半纤维素18.2%;转化为其他组分损失的半纤维素15.7%。
3.2 采用水热-二元催化乙醇法高效分离得到的半纤维素聚糖的主链由D-吡喃式木糖以(1,4)-β-糖苷键连接形成,支链为4-O-甲基-α-D-吡喃式葡萄糖醛酸基、α-L-呋喃式阿拉伯糖基和乙酰基。木质素分离物结构较完整,且木质素分离物中S型木质素含量多于G型木质素。
参考文献
陈 龙,余 强,庄新姝,等. 木质纤维素类生物质组分分离研究进展 [J]. 新能源进展,2017,5(6):450. [百度学术]
CHEN Long, YU Qiang, ZHUANG Xinshu, et al. Advances in Separation of Lignocellulose Biomass Components [J]. Advances in New and Renewable Energy, 2017, 5(6): 450. [百度学术]
徐 丰,杨桂花,吉兴香,等. 热水预处理过程中P 因子对杨木半纤维素溶出效果的影响[J]. 中国造纸,2018,37(8):1. [百度学术]
XU Feng, YANG Guihua, JI Xingxiang, et al. Effect of P Factor on Dissolution of Poplar Hemicellulose during the Hydrothermal Pre⁃treatment Process[J]. China Pulp & Paper, 2018, 37(8): 1 [百度学术]
Arai T, Biely P, Uhliarikova I, et al. Structural Characterization of Hemicellulose Released from Corn Cob in Continuous Flow Type Hydrothermal Reactor[J]. Journal of Bioscience and Bioengineering, 2019, 127(2): 222. [百度学术]
袁素娟, 吉兴香, 田中建, 等. 热水预水解过程杨木及水解液中组分的变化[J]. 中国造纸,2018,37(9):17. [百度学术]
YUAN Sujuan, JI Xingxiang, TIAN Zhongjian, et al. Changes of Components in Poplar and Its Hydrolyzate during Hot Water Prehydrolysis[J]. China Pulp & Paper, 2018, 37(9): 17 [百度学术]
樊富广,涂洪峰,陈从鑫,等. 大豆秸秆乙醇预处理脱木素动力学研究[J]. 中国造纸学报,2017,32(1):1. [百度学术]
FAN Fuguang, TU Hongfeng, CHEN Congxin, et al. Delignification Kinetics of Ethanol Pretreatment of Soybean Stalk[J]. Transactions of China Pulp and Paper, 2017, 32(1): 1. [百度学术]
张 云,张美云,李金宝,等. 分离条件对乙醇法麦草浆黑液总糖及粗木素含量的影响[J]. 纸和造纸,2010,29(10):33. [百度学术]
ZHANG Yun, ZHANG Meiyun, LI Jinbao, et al. Influences of Separation Conditions on the Total Saccharide and Raw Lignin Content in the Black Liquor of Ethanol Wheat Straw Pulp[J]. Paper and Paper Making, 2010, 29(10):33. [百度学术]
Brosse N, Hussin M H, Rahim A A. Organosolv Processes[J].Advances in Biochemical Engineering Biotechnology, 2017, 166:153. [百度学术]
Romani A, Garrote G, Lopez F, et al. Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification [J]. Bioresource Technology, 2011, 102: 5896. [百度学术]
李金宝,宋 特,冯 盼,等. 不同催化剂对麦草组分乙醇溶剂热分离效果的影响 [J]. 中国造纸,2019, 38 (6):27. [百度学术]
LI Jinbao, SONG Te, FENG Pan, et al. Effects of Catalytic Ethanol-based Organosolv on Components Separation of Wheat Straw [J]. China Pulp & Paper, 2019, 38(6): 27. [百度学术]
Mund N K, Dash D, Barik C R, et al. Evaluation of efficient glucose release using sodium hydroxide and phosphoric acid as pretreating agents from the biomass of Sesbania grandiflora (L.) Pers.: A fast growing tree legume [J]. Bioresource Technology, 2017, 236: 97. [百度学术]
Chen X, Li H, Sun S, et al. Co-production of oligosaccharides and fermentable sugar from wheat straw by hydrothermal pretreatment combined with alkaline ethanol extraction [J]. Industrial Crops and Products, 2018, 111: 78. [百度学术]
Shi H Q, Guo K Y, Sun Y N, et al. Extraction of Hemicellulose from Acacia Wood via Autohydrolysis and Ethanol Precipitation [J]. Paper and Biomaterials, 2016,1(1):1. [百度学术]
Choi J H, Jang S K, Kim J H, et al. Simultaneous production of glucose, furfural, and ethanol organosolv lignin for total utilization of high recalcitrant biomass by organosolv pretreatment [J]. Renewable Energy, 2019, 130: 952. [百度学术]
李 蕊,杨桂花,吕高金,等. 玉米秸秆半纤维素的逐级分离及其结构表征[J].中国造纸学报,2017,32(3):1. [百度学术]
LI Rui, YANG Guihua, LYU Gaojin, et al. Separation and Characterization of Hemicelluloses of Corn Stalks [J]. Transactions of China Pulp and Paper, 2017, 32(3): 1. [百度学术]
Dong R X, Mei X W, Ma C, et al. Structural Changes of Wheat Straw Lignin during Formic Acid Treatment [J]. Paper and Biomaterials, 2016, 1(2):16. [百度学术]
张学铭,李丽君,程文家,等. 新型溶剂体系处理对棉秆半纤维素分离效果初探 [J]. 中国造纸,2019,38(6):33. [百度学术]
ZHANG Xueming, LI Lijun, CHENG Wenjia, et al. Separation Efficiency of Hemicelluloses from Cotton Stalk Treated with Novel Complete Dissolution Systems [J]. China Pulp & Paper, 2019, 38(6): 33. [百度学术]
傅英娟,王 鹏,秦 影,等. 杨木自水解液中溶解木质素和胶体木质素的结构特征 [J]. 林产化学与工业,2017,37(4) : 59. [百度学术]
FU Yingjuan, WANG Peng, QIN Ying, et al. Structural Character of Dissolved and Colloidal Lignin in Hydrolysate from Poplar Woodchips Autohydrolysis [J]. Chemistry and Industry of Forest Products, 2017, 37(4): 59. [百度学术]
Li H Y, Sun S N, Zhou X, et al. Structural characterization of hemicelluloses and topochemical changes in Eucalyptus cell wall during alkali ethanol treatment [J]. Carbohydrate Polymers, 2015, 123: 17. [百度学术]
Ma M G, Jia N, Zhu J F, et al. Isolation and characterization of hemicelluloses extracted by hydrothermal pretreatment [J]. Bioresource Technology, 2012, 114: 677. [百度学术]
Sun X F, Sun R, Fowler P, et al. Extraction and characterization of original lignin and hemicelluloses from wheat straw[J]. Journal of Agricultural and Food Chemistry, 2005, 53(4):860. [百度学术]
Peng P, Peng F, Bian J, et al. Isolation and structural characterization of hemicelluloses from the bamboo species Phyllostachys incarnata Wen. [J]. Carbohydrate Polymers, 2011, 86: 883. [百度学术]
Sun Y C, Wen J L, Xu F, et al. Organosolv- and alkali-soluble hemicelluloses degraded from Tamarix austromongolica: Characterization of physicochemical, structural features and thermal stability [J]. Polymer Degradation and Stability, 2011, 96(8): 1478. [百度学术]
Peng Y, Wu S. The structural and thermal characteristics of wheat straw hemicellulose [J]. Journal of Analytical and Applied Pyrolysis, 2010, 88(2): 134. [百度学术]
Sun S N, Cao X F, Li H Y, et al. Structural characterization of residual hemicelluloses from hydrothermal pretreated Eucalyptus fiber [J]. International Journal of Biological Macromolecules, 2014, 69: 158. [百度学术]
Ma X J, Yang X F, Zheng X, et al. Degradation and dissolution of hemicelluloses during bamboo hydrothermal pretreatment [J]. Bioresource Technology, 2014, 161: 215. [百度学术]
Xiao M Z, Chen W J, Hong S, et al. Structural characterization of lignin in heartwood, sapwood, and bark of eucalyptus [J]. International Journal of Biological Macromolecules, 2019, 138: 519. [百度学术]
Martin-Sampedro R, Santos J I, Eugenio M E, et al. Chemical and thermal analysis of lignin streams from Robinia pseudoacacia L. generated during organosolv and acid hydrolysis pre-treatments and subsequent enzymatic hydrolysis [J]. International Journal of Biological Macromolecules, 2019, 140: 311. [百度学术]
Yang M, Rehman M S U, Yan T, et al. Treatment of different parts of corn stover for high yield and lower polydispersity lignin extraction with high-boiling alkaline solvent [J]. Bioresource Technology, 2018, 249: 737. [百度学术]
Inkrod C, Raita M, Champreda V, et al. Characteristics of Lignin Extracted from Different Lignocellulosic Materials via Organosolv Fractionation [J]. BioEnergy Research, 2018, 11(2): 277. [百度学术]
Santos J I, Fillat U, Martin-Sampedro R, et al. Evaluation of lignins from side-streams generated in an olive tree pruning-based biorefinery: Bioethanol production and alkaline pulping [J]. International Journal of Biological Macromolecules, 2017, 105: 238. [百度学术]