摘要
木质素微波解聚存在转化效率偏低、二次反应剧烈等问题。本研究通过在木质素中添加一定比例的废弃香烟过滤嘴(UCF)颗粒来辅助增强木质素的快速解聚和调控产物组分分布。结果表明,随着UCF添加量的增大,生物油产率逐渐增加,生物炭产率呈下降趋势。与理论产率相比,UCF的加入更有利于生物油和生物炭的生成。对生物油化学成分定量分析发现,UCF的加入能够通过脱甲氧基或脱羟基作用来降低愈创木基酚类化合物的产量。当UCF添加量为60%(相对于木质素)时,对羟苯基酚类化合物(127.53 mg/g)和芳香烃类物质(22.28 mg/g)的产量达到最高。对固体产物分析发现,生物炭比表面积随着UCF添加量的增大而逐渐增加,同时UCF加入能够形成炭纤维结构并在木质素炭上附着和生长。本研究发现UCF和木质素在微波解聚过程中发生了显著的协同效应,对于木质素的高效转化和废弃资源高值化利用具有积极意义。
木质素主要来源于制浆造纸工业和生物乙醇等多种生物质综合精炼过程的副产物,由于其富含芳环结构,成为了制备燃料或高价值平台化合物的潜在原料,同时也是一种优质的、可再生的石油基替代
相比于复杂的催化反应过程而言,通过在木质素中加入各种添加剂,尤其是富含氢氧元素的物质来辅助其微波解聚成为了一种简单且行之有效的方
木质素(CAS:9005-53-2),购自TCI(上海)化成工业发展有限公司。废弃香烟过滤嘴(UCF),收集万宝路品牌废弃香烟过滤嘴,去除外层包装纸后进行粉碎,筛选出颗粒为80~100目的UCF样品备用。
微波解聚实验装置(实验室自制);VERTEX 70 傅里叶变换红外光谱仪(FT-IR,德国Bruker公司);6892N/5975I气相色谱-质谱联用仪(GC-MS,美国Agilent公司);Hitachi S-4800场发射扫描电子显微镜(FE-SEM,日本Hitachi公司);ASAP2460比表面积分析仪(BET,美国Micromeritics公司)。
将木质素颗粒和UCF颗粒按照一定比例混合后研磨均匀,利用实验室粉末压片机在10 MPa下压制1 min,制备成直径为10 mm、厚度约为4 mm的片状混合物,如

图1 UCF辅助木质素的微波解聚过程
将10 g片状混合物加入到微波解聚反应器中,持续通入600 mL/min的高纯氮气15 min(置换反应器中的空气),然后将氮气通过携带甲醇的洗气瓶后,再通入反应器中5 min。在保持气体通入的情况下开启微波反应器,微波频率为2.45 GHz,微波功率为1000 W,反应温度为600℃(测温热电偶从左侧进气方向水平插入反应器中直接接触固体反应物,热电偶通过塑料密封垫圈进行密封以防止微波和气体泄露),反应时间为15 min。反应产生的解聚蒸汽在 -35℃左右的乙醇冷阱中冷凝收集。反应结束后,关闭微波反应器,去除甲醇洗气瓶并继续通入氮气,待微波反应器温度降至80℃以下时,停止通入氮气,取出反应器收集并称量所得生物炭的质量,通过去除生物油中甲醇的质量计算生物油的产率。
采用有效碳数(ECN)法来定量分析生物油中化学组分的含

(a) 微波解聚产物产率的计算值和实验值比较

(b) 生物油红外光谱图
图2 UCF辅助木质素的微波解聚产物产率及红外光谱图
木质素解聚产物通常以低聚体和单酚类化合物为

(a) 愈创木酚类产物产量

(b) 酚类产物产量

(c) 芳香烃类产物产量

(d) 杂环类及酯类产物产量
图3 UCF辅助木质素微波解聚产物-生物油的组分分布
从
由于木质素较高的含碳量和较低的含氢量,导致其更容易在高温下缩聚生成生物炭,从

(a) 未添加UCF的木质素

(b) UCF添加量20%

(c) UCF添加量60%

(d) UCF添加量100%

(e) UCF

(f) 生物炭比表面积
图4 UCF辅助木质素微波解聚产物-生物炭的电镜图和比表面积
本研究提出了一种将废弃香烟过滤嘴(UCF)颗粒添加到木质素中来辅助增强木质素微波解聚效率的新思路。研究结果表明,当UCF添加量为60%(相对于木质素)时,木质素微波解聚液体产物生物油中生成了最高产量的对羟苯基酚类化合物(127.53 mg/g)和芳香烃类物质(22.28 mg/g)。随着UCF添加量的增加,生物油产率逐渐增加,生物炭产率呈下降趋势;通过与理论产物产率的对比发现,UCF的加入有利于生成更高产率的生物油和生物炭。UCF的加入还能够进一步提高固体产物生物炭的比表面积,同时,UCF解聚生成的炭纤维能够在木质素炭表面稳定附着和生长。在微波解聚过程中,UCF与木质素存在显著的协同效应,为木质素的高效解聚和转化提供了新的途径。
参考文献
王则祥, 李 航, 谢文銮, 等. 木质素基本结构、热解机理及特性研究进展[J]. 新能源进展, 2020,8(1):6. [百度学术]
WANG Ze-xiang, LI Hang, XIE Wen-luan, et al. Progress in Basic Structure, Pyrolysis Mechanism and Characteristics of Lignin[J]. Advances in New and Renewable Energy, 2020,8(1):6. [百度学术]
宋国勇. “木质素优先”策略下林木生物质组分催化分离与转化研究进展[J]. 林业工程学报, 2019,4(5):1. [百度学术]
SONG Guo-yong. The Development of Catalytic Fractionation and Conversion of Lignocellulosic Biomass Under Lignin-first Strategy[J]. Journal of Forestry Engineering, 2019,4(5):1. [百度学术]
LIAO Y, KOELEWIJN S F, VAN DEN BOSSCHE G, et al. A Sustainable Wood Biorefinery for Low-carbon Footprint Chemicals Production[J]. Science, 2020,367(6484):1385. [百度学术]
WANG Min, WANG Feng. Catalytic Scissoring of Lignin into Aryl Monomers[J]. Advanced Materials, 2019,31(50):1901866. [百度学术]
陈丽卿. 生物质精炼技术与制浆造纸的结合[J]. 中国造纸学报, 2019,34(3):77. [百度学术]
CHEN Liqing.The Combination of Biorefinery with Pulp and Paper Industry[J].Transactions of China Pulp and Paper, 2019,34(3):77. [百度学术]
WANG Wen-liang, WANG Min, LI Xin-ping, et al. Microwave-assisted Catalytic Cleavage of C-C Bond in Lignin Models by Bifunctional Pt/Cdc-Sic[J]. ACS Sustainable Chemistry & Engineering, 2020,8(1):38. [百度学术]
ZHANG Xue-song, RAJAGOPALAN Kishore, LEI Han-wu, et al. An Overview of a Novel Concept in Biomass Pyrolysis: Microwave Irradiation[J]. Sustainable Energy Fuels, 2017,1(8):1664. [百度学术]
LI Si-min, LUO Zhong-yang, WANG Wen-bo, et al. Characterization of Pyrolytic Lignin and Insight into Its Formation Mechanisms Using Novel Techniques and Dft Method[J]. Fuel, 2020,262:116516. [百度学术]
WANG Wen-liang, LI Xin-ping, YE Dan, et al. Catalytic Pyrolysis of Larch Sawdust for Phenol-rich Bio-oil Using Different Catalysts[J]. Renewable Energy, 2018,121:146. [百度学术]
WANG Wen-liang, WANG Min, HUANG Jia-le, et al. Formate-assisted Analytical Pyrolysis of Kraft Lignin to Phenols[J]. Bioresource Technology, 2019,278:464. [百度学术]
付时雨. 纤维素的研究进展[J]. 中国造纸, 2019,38(6):54. [百度学术]
FU Shiyu. Progress in Cellulose Research[J]. China Pulp & Paper, 2019,38(6):54. [百度学术]
WANG Wen-liang, WANG Min, HUANG Jia-le, et al. High Efficiency Pyrolysis of Used Cigarette Filters for Ester-rich Bio-oil through Microwave-assisted Heating[J]. Journal of Cleaner Production, 2020,257:120596. [百度学术]
LI Hong, LI Jing, FAN Xiao-lei, et al. Insights into the Synergetic Effect for Co-pyrolysis of Oil Sands and Biomass Using Microwave Irradiation[J]. Fuel, 2019,239:219. [百度学术]
WANG Wen-liang, SHI Yu-jie, WANG Shao-hua, et al. Pyrolysis Behavior and Product Characteristics of Microwave Co-pyrolysis of Cellulose and Waste Tire[J]. Chemical Journal of Chinese Universities-Chinese, 2018,39(5):964. [百度学术]
TORKASHVAND J, FARZADKIA M. A Systematic Review on Cigarette Butt Management as a Hazardous Waste and Prevalent Litter: Control and Recycling[J]. Environmental Science and Pollution Research International, 2019,26(12):11618. [百度学术]
STIGLER-GRANADOS P, FULTON L, NUNEZ PATLAN E, et al. Global Health Perspectives on Cigarette Butts and the Environment[J]. International Journal of Environmental Research and Public Health, 2019,16(10):1858. [百度学术]
JOLY F X, COULIS M. Comparison of Cellulose Vs. Plastic Cigarette Filter Decomposition under Distinct Disposal Environments[J]. Waste Management, 2018,72:349. [百度学术]
SLAUGHTER E, GERSBERG R M, WATANABE K, et al. Toxicity of Cigarette Butts, and Their Chemical Components, to Marine and Freshwater Fish[J]. Tobacco Control, 2011,20(1):25. [百度学术]
SHUAI L, AMIRI M T, QUESTELL-SANTIAGO Y M, et al. Formaldehyde Stabilization Facilitates Lignin Monomer Production During Biomass Depolymerization[J]. Science, 2016,354(6310):329. [百度学术]
AO Wen-ya, FU Jie, MAO Xiao, et al. Microwave Assisted Preparation of Activated Carbon from Biomass: A Review[J]. Renewable and Sustainable Energy Reviews, 2018,92:958. [百度学术]
韩洪晶, 葛 芹, 陈彦广, 等. Ca1-xPrxFeO3催化热解甘蔗渣木质素制备酚类化合物[J]. 高等学校化学学报, 2020,41(2):331. [百度学术]
HAN Hong-jing, GE Qin, CHEN Yan-guang, et al. Production of Phenolic Compounds from Bagasse Lignin via Catalytic Pyrolysis of Ca1-xPrxFeO3[J]. Chemical Journal of Chinese Universities, 2020, 41(2): 331. [百度学术]
ZHANG Xiao-hua, MA Hao, WU Shu-bin. Effects of Temperature and Atmosphere on the Formation of Oligomers During the Pyrolysis of Lignin[J]. Fuel, 2020,268:117328. [百度学术]
董志国, 刘紫灏, 李 建, 等. 超滤黑液木质素催化热解特性研究[J]. 太阳能学报, 2020,41(2):58. [百度学术]
DONG Zhi-guo, LIU Zi-hao, LI Jian, et al. Study on Catalytic Pyrolysis Characteristics of Lignin Ultrafiltrated from Black Liquor[J]. Acta Energiae Solaris Sinica, 2020, 41(2): 58. [百度学术]
WANG Wen-liang, WANG Min, HUANG Jia-le, et al. Microwave-assisted Catalytic Pyrolysis of Cellulose for Phenol-rich Bio-oil Production[J]. Journal of the Energy Institute, 2019,92(6):1997. [百度学术]
FU Q, CHEN Y, SORIEUL M. Wood-Based Flexible Electronics[J]. ACS Nano, 2020,14(3):3528. [百度学术]
呼延永江, 高 帆. 石墨烯掺杂对木质素基碳纳米纤维电化学性能影响的研究[J]. 中国造纸学报, 2020,35(1):33. [百度学术]
HUYAN Yongjiang, GAO Fan. Effect of Graphene Doping on the Electrochemical Properties of Lignin-based Carbon Nanofibers[J]. Transactions of China Pulp and Paper, 2020,35(1):33. [百度学术]
MEI Xiu-wen, LIU Jia, PENG Feng, et al. Phosphoric Acid-assisted Pretreatment Strategy for the Rational Synthesis of Lignin-derived Hierarchical Porous Carbon toward High-performance Supercapacitors[J]. Paper and Biomaterials, 2020,5(1):43. CPP [百度学术]