摘要
采用催化臭氧氧化法处理造纸废水反渗透(RO)浓水和二级生化出水,探讨了臭氧用量、反应时间对CODCr去除率的影响。结果表明,采用催化臭氧氧化法处理RO浓水,当臭氧用量为75 mg/(L·h)、反应时间为120 min时,CODCr去除率超过70%。采用催化臭氧氧化法处理二级生化出水时,当臭氧用量为100 mg/(L·h)、反应时间为90 min时,CODCr去除率超过60%,出水CODCr可稳定在30 mg/L以下,满足河北省地方标准DB 13/2795—2018《大清河流域污染物排放标准》中关于重点控制区域的排放限值要求。中试和工程运行结果表明,在造纸废水RO浓水和二级生化出水的催化臭氧氧化处理中,工艺运行稳定可靠。
制浆造纸工业是最重要的用水大户之
近年来,O3/H2O2、O3/UV、UV/H2O2、芬顿(Fenton)、UV/Fenton、湿式氧化、催化湿式氧化、光催化、催化臭氧氧化等高级氧化技术作为降解有机物的深度处理技术得到广泛的关
某纸业公司现有废水(10000 t/d生产废水与2000 t/d生活污水的混合废水,CODCr 240~350 mg/L)处理工艺为“水解酸化+缺氧+好氧+多介质过滤”,部分多介质过滤器出水进入“超滤+反渗透”系统处理后回用。试验用水分别取自多介质过滤器出水(以下称二级生化出水)和反渗透工段的RO浓水(以下简称RO浓水),废水主要指标见
本试验装置主要由臭氧发生系统、催化臭氧氧化反应器装置和臭氧尾气吸收装置组成,试验装置及工艺流程见

图1 试验装置及工艺流程
以RO浓水为目标降解物,采用静态间歇式反应,在相同的反应条件下,通过对比出水CODCr值,从3种商品催化剂(A、B、C)中筛选出适宜的催化剂,同时对比单独臭氧氧化和最佳催化剂的吸附对CODCr去除率的影响。分别以RO浓水和二级生化出水为目标降解物,采用静态间歇式反应,研究适宜的催化剂催化臭氧氧化工艺。最后通过连续流中试试验或工程应用考察工艺的稳定性。
利用RO浓水的催化臭氧氧化对催化剂进行筛选,结果见

图2 不同催化剂对RO浓水CODCr去除效果对比
反应条件:RO浓水CODCr 为(170±5)mg/L,pH值为8.0±0.2,TDS 为(1800±80)mg/L。

催化剂A

催化剂B

催化剂C
图3 不同催化剂的SEM图

图4 催化剂C的N2吸附-脱附等温曲线(-196℃)
上述结果表明催化剂的多孔表面有利于催化臭氧氧化的反
由

图5 臭氧投加量对RO浓水CODCr去除率的影响
反应条件:RO浓水CODCr (170±5) mg/L,pH值8.0±0.2,TDS (1800±80) mg/L。
当RO浓水的CODCr值为170 mg/L时,臭氧投加量小于75 mg/(L·h)时,反应90 min和120 min出水的CODCr均达不到50 mg/L的要求。当臭氧投加量为75 mg/(L·h)时,反应120 min出水的CODCr值小于50 mg/L。反应120 min后的出水中未检测到溶解性臭氧,而反应150 min出水中的臭氧浓度为0.11 mg/L。当臭氧投加量为100 mg/(L·h)时,反应90 min时出水中的臭氧浓度为0.15 mg/L。可知在该反应体系中最佳的臭氧投加量为75 mg/(L·h)。
反应时间对RO浓水CODCr去除率的影响如

图6 反应时间对RO浓水CODCr去除率的影响
反应条件:RO浓水CODCr (170±5) mg/L,pH值8.0±0.2,TDS (1800±80) mg/L,臭氧投加量75 mg/(L·h)。

图8 臭氧投加量对二级生化出水CODCr去除率的影响
反应条件:二级生化出水CODCr (55±2)mg/L,pH值8.0±0.2,TDS(495±15)mg/L,反应时间60 min。
Zheng等

图9 反应时间对二级生化出水CODCr去除率的影响
反应条件:二级生化出水CODCr (55±2)mg/L,pH值8.0±0.2,TDS(495±15)mg/L,臭氧投加量100 mg/(L·h)。
为验证催化臭氧氧化工艺处理二级生化出水的稳定性和适用性,在连续流中试试验的基础上开展了规模为1440
采用催化臭氧氧化工艺处理造纸废水反渗透(RO)浓水(CODCr为100~175 mg/L)和二级生化出水(CODCr为40~60 mg/L),探讨了臭氧投加量、反应时间对CODCr去除效果的影响。
3.1 采用催化臭氧氧化工艺处理造纸废水的RO浓水时,对CODCr有较好的去除效果,当臭氧投加量为75 mg/(L·h)、反应时间为120 min时,CODCr去除率高达74%。
3.2 采用催化臭氧氧化工艺处理造纸废水的二级生化出水时,当臭氧投加量为100 mg/(L·h)、反应时间为90 min时,CODCr去除率超过60%,出水CODCr可稳定达到30 mg/L以下,远高于国家标准,满足河北省地方标准DB 13/2795—2018《大清河流域污染物排放标准》中的排放限值要求。
3.3 长时间连续流中试和工程应用均表明,催化臭氧氧化工艺在处理过程中不添加任何化学药剂,不增加出水的含盐量,不产生污泥,工艺运行维护简单,无二次污染,适宜于工程化推广。采用催化臭氧氧化工艺处理掺杂生活污水的工业废水,可将废水的CODCr从40~60 mg/L稳定降低至30 mg/L以下,为城市污水厂及工业园区污水厂的提标改造提供了借鉴和参考。
参考文献
王 强, 刘雅玲, 叶维丽, 等. 我国造纸工业主要水污染物排放量的关键影响要素研究[J].中国造纸学报, 2014, 29(4):51. [百度学术]
WANG Qiang, LIU Yaling, YE Weili, et al. The Key Factors Influencing Main Water Pollutants Emission of Paper Industry In China[J]. Transactions of China Pulp and Paper, 2014, 29(4):51. [百度学术]
张学斌, 黄立军. 我国造纸行业的基本现状及发展对策[J]. 中国造纸, 2017, 36(6):74. [百度学术]
ZHANG Xuebin, HUANG Lijun. Study on the Basic Situation and Development Countermeasures of Paper Making Industry in China[J]. China Pulp & Paper, 2017, 36(6):74. [百度学术]
ZHU X, WANG J, JIANG Y, et al. Feasibility study on satisfing standard of water pollutants for pulp and paper industry [M]//CHU M J, XU H H, JIA Z, et al. Sustainable Environment and Transportation, 2012. [百度学术]
杨 达,张 浩,蓝惠霞,等.石墨烯促进Fenton氧化处理制浆中段废水的研究[J].中国造纸学报,2018, 33(4):1. [百度学术]
YANG Da, ZHANG Hao, LAN Huixia, et al. Study on Effect of Graphene on Middle Stage Pulping Effluent Treatment by Fenton Oxidation[J]. Transactions of China Pulp and Paper, 2018, 33(4):1. [百度学术]
Oller I, Malato S, Sanchen-perez J A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination-A review [J]. Science of the Total Environment, 2011, 409(20): 4141. [百度学术]
KAMALI M, KHODAPARAST Z. Review on recent developments on pulp and paper mill wastewater treatment [J]. Ecotoxicology and Environmental Safety, 2015, 114: 326. [百度学术]
Fontanier V, Farines V, Albet J, et al. Study of catalyzed ozonation for advanced treatment of pulp and paper mill effluents [J]. Water Research, 2006, 40(2): 303. [百度学术]
莫广付. 电吸附技术在造纸废水深度处理中的应用[J]. 中国造纸, 2015, 34(3): 6. [百度学术]
MO Guangfu. Application of Electrosorption Technology in Advanced Treatment of Papermaking Waste Water [J]. China Pulp & Paper, 2015, 34(3): 6. [百度学术]
HE S, LUAN P, MO L, et al. Mineralization of Recalcitrant Organic Pollutants in Pulp and Paper Mill Wastewaters through Ozonation Catalyzed by Cu-Ce Supported on Al2O3[J]. Bioresources, 2018, 13(2): 3686. [百度学术]
XU X, XIA Z, LI L, et al. Catalytic Ozonation of Organics in Reverse Osmosis Concentrate with Catalysts Based on Activated Carbon[J]. Molecules (Basel, Switzerland), 2019, 24(23) :4365. [百度学术]
Wang XinYu, Chen JiaChuan, Chen HongLei, et al. Influence of Chemical Pretreatment on the Dissolved Organics in Poplar Alkaline Peroxide Mechanical Pulping Effluent[J]. Paper and Biomaterials, 2017,2(1):32. [百度学术]
Hermosilla D, Merayo N, Ordonez R, et al. Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from a paper mill[J]. Waste Management, 2012, 32(6): 1236. [百度学术]
张金鸿, 侯 霙, 李海芳, 等. 机械蒸汽再压缩技术处理反渗透浓水的中试研究[J]. 中国给水排水, 2011, 27(11): 1. [百度学术]
ZHANG Jinhong, HOU Ying, LI Haifang, et al. Pilot Study on Mechanical Vapor Recompression Technology for Treatment of Concentrated Water from Reverse Osmosis Process [J]. China Water & Wastewater, 2011, 27(11): 1. [百度学术]
ZHAO L, MA J, SUN Z, et al. Mechanism of heterogeneous catalytic ozonation of nitrobenzene in aqueous solution with modified ceramic honeycomb [J]. Applied Catalysis B: Environmental, 2009, 89(3/4): 326. [百度学术]
Nawrocki J, Kasprzyk-hordern B. The efficiency and mechanisms of catalytic ozonation [J]. Applied Catalysis B: Environmental, 2010, 99(1): 27. [百度学术]
WANG J, CHEN H. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective [J]. The Science of the Total Environment, 2019: 135249. [百度学术]
Ghuge S P, Saroha A K. Catalytic ozonation for the treatment of synthetic and industrial effluents - Application of mesoporous materials: A review [J]. Journal of Environmental Management, 2018, 211: 83. [百度学术]
雷利荣,李友明. 臭氧及催化臭氧氧化法处理制浆废水的研究进展[J]. 中国造纸, 2017, 36(8): 51. [百度学术]
LEI Lirong, LI Youming. Research Progress of Pulp Mill Effluent Treatment with Ozonation and Catalytic Ozonation Technology[J]. China Pulp & Paper, 2017, 36(8): 51. [百度学术]
AFZAL S, QUAN X, ZHANG J. High surface area mesoporous nanocast LaMO3 (M = Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism [J]. Applied Catalysis B: Environmental, 2017, 206: 692. [百度学术]
Balcioglu I A, Tarlan E, Kivilcimdan C, et al. Merits of ozonation and catalytic ozonation pre-treatment in the algal treatment of pulp and paper mill effluents [J]. Journal of Environmental Management, 2007, 85(4): 918. [百度学术]
何 灿, 刘鲤粽, 何文丽. 臭氧催化氧化深度处理焦化废水的试验研究[J]. 洁净煤技术, 2016, 22(5): 53. [百度学术]
HE Can,LIU Lizong,HE Wenli.Advanced treatment of coking waste water by ozone catalytic oxidation technology[J].Clean Coal Technology, 2016, 22(5): 53. [百度学术]
何 灿, 黄 祁, 张力磊, 等. 催化臭氧氧化深度处理高含盐废水的工程应用[J]. 工业水处理, 2019, 39(11): 107. [百度学术]
HE Can, HUANG Qi, ZHANG Lilei, et al Application of catalytic ozonation technology in advanced treatment of high-salinity wastewater[J]. Industrial Water Treatment, 2019, 39(11): 107. [百度学术]
HE Shuaiming, LI Jun, XU Jun, et al. Enhanced Removal of COD and Color in Paper-making Wastewater by Ozonation Catalyzed by Fe Supported on Activated Carbon[J]. Bioresources, 2016, 11(4): 8396. [百度学术]
ZHENG Cheng, YANG Rendang, WANG Yang. Mn/sepiolite as the heterogeneous ozonation catalysts applied to the advanced treatment of regenerated-papermaking wastewater[J]. Water Science and Technology, 2017, 75(5): 1025. [百度学术]
何帅明, 莫立焕, 徐 峻, 等. 活性炭负载铈催化臭氧处理桉木制浆废水[J]. 中国造纸, 2016, 35(3): 1. [百度学术]
HE Shuaiming, MO Lihuan, XU Jun, et al. Catalytic Ozonation of Eucalyptus Pulping Effluent by Cerium Loaded on Activated Carbon[J]. China Pulp & Paper, 2016, 35(3): 1. [百度学术]
ZHUANG Haifeng, GUO Jianbo, HONG Xiaoting. Advanced Treatment of Papermaking Wastewater Using Catalytic Ozonation with Waste Rice Straw-Derived Activated Carbon-Supported Manganese Oxides as a Novel and Efficient Catalyst[J]. Polish Journal of Environmental Studies, 2017, 27(1): 451. CPP [百度学术]