摘要
近年来,纤维素纳米纤丝(CNF)因其独特的物理化学性能受到了广泛关注。当前,CNF主要采用化学或酶处理等方法对纤维进行预处理,再通过机械法对预处理后的纤维进行机械处理而得到。随着人们环保意识的日渐增强,可回收的有机酸水解法,低共熔溶剂预处理结合机械法制备CNF等已成为CNF制备领域的研究热点。本文综述了CNF的制备和改性研究进展,总结了CNF在制备和改性过程中存在的问题。此外,讨论了不同制备方法的优缺点,并介绍了环保、高效的CNF制备方法及其最新的应用领域。
纤维素纳米纤丝(cellulose nanofibril, CNF)由环保可再生的纤维原料制备而成,因其具有轻质、高亲水性、可再生、易降解、反应活性高、纳米尺寸效应等优点,在食品、医学、造纸、汽车、电子产品、石油开采等领域有着广泛的应
CNF直径在纳米级,长度为几个微米,CNF的透射电镜图如

图1 CNF的透射电镜
高压均质法是制备CNF最为常用的机械方法。在制备CNF的均质过程中,纤维素纤维在高压下反复被抽提,并通过真空阀,当阀门快速关闭和打开时,纤维在高压剪切力的作用下发生原纤化,通过高压的反复作用使纤维尺寸的逐步减小。目前已报道的研究成果表明,CNF纤维尺寸受均质次数和均质时施加的压力影响较大。Herrick等
采用研磨机对纤维素纤维进行研磨同样可以制得CNF。在研磨过程中,纤维素纤维通过两个槽盘之间的间隙,其中一个槽盘处于静态,另一个槽盘以1500 r/min左右的速度旋转,纤维的原纤化程度取决于槽盘之间的距离、槽盘通道的形貌以及纤维通过研磨机的次数。Kentaro等
高强度超声法主要通过高强度的超声波在水中产生超声作用,降低纤维内部微纤丝的结合力,最终使得微米级纤维素纤维逐渐分解成纳米纤维,但采用该法制得的CNF得率低,且尺寸不均一。一般在超声波作用前,首先对植物纤维进行纯化,经化学处理去除掉植物纤维中大部分的木质素和半纤维素,然后将纯化的纤维素纤维浸泡在蒸馏水中,用去离子水将纤维配制成浓度为1%左右的悬浮液,并将其置于工作频率为20~25 kHz的超声波仪中进行处理,超声波处理后所得CNF的尺寸及得率一般与超声时间有关。Li等
静电纺丝法中,首先将纤维溶液注入金针状注射器,并高电场作用下稳定地挤压而制备出CNF。当电压足够高,带电的纤维素溶液随着一个相当复杂的回路被喷射出来,在此过程中,溶剂蒸发,留下随机排列的纳米纤维聚集电极上,一般而言,纤维的直接溶解是比较困难的,因此,采用静电纺丝法制备CNF需要合适的溶剂。
近年来研究人员研发了各种溶解纤维的溶剂体系,主要包括二甲基乙酰胺/氯化锂(DMAc)/LiC
在化学机械法中,常采用TEMPO (2,2,6,6-四甲基哌啶氧化物)氧化法对纤维进行氧化预处

图2 TEMPO氧化法氧化机理
一般对于最常用的TEMPO及其衍生物而
采用TEMPO法对纤维进行预处理后,再用机械法进行处理,能得到分散更为稳定、尺寸更为均一的CN
采用机械法制备CNF具有环保优势,但能耗过大,制得的CNF尺寸不均一,分散性能差;采用化学法制备CNF具有反应效率高的优点,但环境污染大,经济成本高;采用生物法制备CNF具备环保优势,但反应效率一般较
溶剂辅助预处理结合机械法可实现对CNF表面亲疏水性的调控,且操作简易,是一种环保且高效的制备方法。Huang等
传统CNF的制备多以针叶木和阔叶木为基材进行制备。随着纳米材料的发展,不同原料种类的CNF也得到了充分的发展。例如,Wen等
尽管CNF具有诸如易降解、原料可再生、机械强度高、比表面积巨大、CNF凝胶具有优良的流变性能等优点,可广泛应用于造纸、包装、生物医疗,生物燃料等各个领
对CNF的改性可以概括为表面吸附改性、化学接枝改性以及聚合物接枝改性等方
表面吸附改性方法是将功能性物质通过物理吸附的方式吸附于CNF表面,达到对CNF改性的目的,该方法具有简单易操作的优点。物理吸附通常可分为两类:吸附聚电解质和吸附其他组分。不带电聚合物可通过氢键、范德华力或其他作用力吸附到纤维表面;带电聚合物可通过离子间的相互作用吸附到纤维表面。聚合物表面的电荷密度、电荷分布情况以及体系中是否有盐的存在都会影响纤维与聚合物的结合程度。
Wagberg等
聚电解质/CNF复合材料可提高复合聚合物的胶体稳定性,用作造纸行业的助留剂和絮凝剂。Galván等
含氟表面活性剂(如全氟十八烷酸)可与CNF表面羟基发生离子相互作用吸附到CNF表面。TEMPO氧化得到的CNF(TOCNF)可通过吸附阳离子表面活性剂溴化十六烷基三甲铵(CTAM)来提高TOCNF的疏水性能,但制备所得TOCNF仅表现出中度疏水,吸附改性后TOCNF的接触角为60°,未改性CNF的接触角为42
总之,物理吸附法是一种能提高CNF与疏水聚合物兼容性的绿色、简便、廉价的方法,然而,相比化学接枝改性法制备的CNF,物理吸附法改性的CNF,改性聚合物或单体与CNF间的结合力较弱(仅靠范德华力或氢键等作用力结合),在高温、高盐、高剪切力等特殊环境下不能稳定存在而失去相应的性能,因此,为确保CNF和CNF水凝胶在特殊环境中仍能具备相关性能,对CNF进行化学接枝改性尤为重要。
对CNF进行化学改性可以利用化学方法在其表面接枝单分子或聚合物来实现。CNF的化学改性通常发生在CNF表面的羟基或纤维素纤维预处理后的功能性基团。发生在CNF表面羟基上的化学改性方法通常包括乙酰化、硅烷化和氨甲酰化改性等。
CNF的多羟基结构,为在其表面进行乙酰化改性提供了基础。乙酸和硫酸是传统化学法乙酰化改性中的常用催化剂,传统方法的缺点是预处理时间以及反应时间均很长,且纤维素会被降解,而乙酰化改性可提高CNF的疏水性能。
CNF的乙酰化改性通常以少量的高氯酸或硫酸作为催化剂,将乙酸和乙酸酐的固体混合物与CNF发生反应。2020年,Salem等
在CNF表面接枝乙酰化基团是提高CNF表面疏水性的常用手段,Singh等
Rostami等
Madivoli等
对纤维进行硅烷化改性可赋予纤维疏水性能,Cunha等
CNF的硅烷化改性除了用于提高CNF的疏水性能,还用于提高CNF对金属离子的吸附性能。Hokkanen等
Gilberto等
除了上述以CNF为原料进行的化学改性外,研究人员还以TEMPO氧化处理后的CNF(TOCNF)为原料进行化学改性。比如,采用TEMPO氧化法制备CNF,对未改性的CNF进行TEMPO氧化预处理,使CNF表面带有羧基,制得TOCNF,从而利于对CNF进行进一步的化学改性。Niu等
将聚合物接枝到CNF表面是一种常用的改性CNF的方法,主要可分为两大类,即“grafting from”和“grafting on to”。对于“grafting from”接枝改性,通常将反应单体、引发剂和CNF混合,由引发剂引发CNF进行接枝聚合,采用该方法制得的聚合物难以测定其分子质量;此外,反应生成的均聚物以及未反应的单体也都会保留在溶液中。对于“grafting onto”接枝改性,通常将反应聚合物、CNF以及偶联剂混合,由偶联剂引发接枝聚合反应,由于聚合物链的空间位阻效应较大,因而采用该方法得到的改性产物通常接枝率较低,而由于“grafting from”接枝改性方法中参与反应的单体的空间位阻相对较低,因而采用该法获得的改性CNF接枝率较高。
Stenstad等
Navarro等
Silva等
“Grafting from”接枝法也适用于TOCNF,Zhang等
“Grafting onto”法也是一种用于改性CNF的常用方法。Mulyadi等
综上可知,众多的CNF的改性方法可赋予CNF以优良的物理化学性能,从而拓展了CNF的应用领域。
CNF的传统应用领域包括纳米复合材
CNF还可应用于石油开采行业中,Li等

图3 膨润土颗粒与改性CNF的吸附机理
由于CNF具有良好的机械性能和柔韧性,因而可用于负载粉状纳米材料,从而解决粉状纳米材料难以应用的难题。例如,共价有机框架材料(covaleng organic frameworks, COFs), 金属有机框架材料 (metal organic frameworks, MOFs)等具有丰富而规则的孔道结构,比表面积大,质轻,结晶度高,热稳定性高等优点,在传感器、电池、超级电容器、吸附剂、催化剂等领域有着广泛的应用。然而由于这些材料本身为粉末状,严重限制了它们的进一步应
当前CNF的制备还未能实现大规模的产业化,且化学机械法仍为目前最为常用的制备方法。然而,化学预处理过程中,TEMPO、NaClO等有毒物质的使用给环境造成了很大的危害,因此,科研工作者通过酶水解、有机酸水解、高碘酸盐氧化、低共熔溶剂处理以及极性及非极性溶剂处理等预处理方法,使得纤维在机械力的作用下解纤效率更高,进而提高CNF的制备效率,且由于部分预处理体系中,化学药品的回收利用率高,从而使得制备过程较之传统化学预处理方法更为环保。此外,CNF水凝胶的干燥、储存以及运输问题亦为当前亟待解决的重要问题。为拓展CNF的应用领域,对CNF进行功能化改性已成为必然趋势,由于CNF优良的物理化学性能,以及各行业对环保型产品的需求,CNF有着广阔的应用前景。
参考文献
DONG Fengxia,LIU Wen,LIU Hongfeng. Preparation and Application of Nanocellulose[J]. China Pulp & Paper,2012,31(6):68. [百度学术]
董凤霞,刘 文,刘红峰. 纳米纤维素的制备及应用[J].中国造纸,2012,31(6):68. [百度学术]
LIU Xiongli, ZHANG Hao,CHEN Lingfeng,et al.Application of Nanocellulose in Tobacco Sheet Prepared by Papermaking Process[J].China Pulp & Paper,2018,37(1):14. [百度学术]
刘雄利,张 昊,陈岭峰,等.纳米纤维素替代部分造纸法烟草基片中木浆纤维的研究[J].中国造纸,2018,37(1):14. [百度学术]
LIU Xiongli, ZHANG Hao,CHEN Lingfeng,et al.Application of Nanocellulose in the Production of Coating Fluid of Reconstituted Tobacco[J].China Pulp & Paper,2018,37(5):20. [百度学术]
刘雄利,张 昊,陈岭峰,等.纳米纤维素在造纸法烟草薄片涂布中的应用研究[J].中国造纸,2018,37(5):20. [百度学术]
Luo HuiZe, Li JuanJuan, Zhou FengShan. Advances in hard tissue engineering materials—nanocellulose-based composites[J].Paper and Biomaterials, 2018, 8(4): 62. [百度学术]
Ma Chang, Ma Mingguo, Li Zhiwen, et al. Nanocellulose composites—properties and applications[J]. Paper and Biomaterials, 2018, 3(2):51. [百度学术]
Rol F, Belgacem M N, Gandini A, et al. Recent advances in surface-modified cellulose nanofibrils[J]. Progress in Polymer Science, 2019, 88: 241. [百度学术]
Herrick F W,Casebier R L,Hamilton J K,et al.Microfibrillated cellulose: morphology and accessibility[C].J.Appl.Polym.Sci.:Appl.Polym.Symp;(United States),1983. [百度学术]
Kentaro A,Shinichiro I,Hiroyuki Y.Obtaining cellulose nanofibers with a uniform width of 15nm from wood[J].Biomacromolecules,2007,8(10):3276. [百度学术]
Iwamoto S,Nakagaito A N,Yano H,et al.Optically transparent composites reinforced with plant fiber-based nanofibers[J].Applied Physics A,2005,81(6):1109. [百度学术]
Li M,Wang L J,Li D,et al.Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp[J].Carbohydrate Polymers,2014,102(3):136. [百度学术]
Chen W,Abe K,Uetani K,et al.Individual cotton cellulose nanofibers:pretreatment and fibrillation technique[J].Cellulose,2014,21(3):1517. [百度学术]
Frey M W.Electrospinning cellulose and cellulose derivatives[J].Polymer Reviews,2008,48(2):378. [百度学术]
Quan S L,Kang S G,Chin I J.Characterization of cellulose fibers electrospun using ionic liquid[J].Cellulose,2010,17(2):223. [百度学术]
Kulpinski P.Cellulose nanofibers prepared by the N-methylmorpholine-N-oxide method[J].Journal of Applied Polymer Science,2010,98(4):1855. [百度学术]
Qi H,Sui X,Yuan J,et al.Electrospinning of cellulose-based fibers from NaOH/urea aqueous system[J].Macromolecular Materials & Engineering,2010,295(8):695. [百度学术]
Ma Z,Ramakrishna S.Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification[J].Journal of Membrane Science,2008,319(1):23. [百度学术]
Fukuzumi H,Saito T,Isogai A.Influence of TEMPO-oxidized cellulose nanofibril length on film properties[J].Carbohydrate Polymers,2013,93(1):172. [百度学术]
Habibi Y. Key advances in the chemical modification of nanocelluloses[J]. Chemical Society Reviews, 2014,43(5): 1519. [百度学术]
Zhao J,Zhang W,Zhang X,et al.Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization[J].Carbohydrate Polymers,2013,97(2):695. [百度学术]
Tanaka R,Saito T,Isogai A.Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8[J].International Journal of Biological Macromolecules,2012,51(3):228. [百度学术]
Iwamoto S,Kai W,Isogai T,et al.Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils[J].Polymer Degradation and Stability,2010,95(8):1394. [百度学术]
Isogai T,Saito T,Isogai A.Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation[J].Cellulose,2011,18(2):421. [百度学术]
Shinoda R,Saito T,Okita Y,et al.Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils[J].Biomacromolecules,2012,13(3):842. [百度学术]
Tsuguyuki S,Satoshi K,Yoshiharu N,et al.Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose[J].Biomacromolecules,2007,8(8): 2485. [百度学术]
Besbes I,Alila S,Boufi S.Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres:Effect of the carboxyl content[J].Carbohydrate Polymers,2011,84(3):975. [百度学术]
Du H S, Liu C, Zhang M M, et al. Preparation and industrialization status of nanocellulose[J].Progress in Chemistry,2018,30(4):448. [百度学术]
杜海顺,刘 超,张苗苗,等.纳米纤维素的制备及产业化[J].化学进展,2018,30(4):448. [百度学术]
Mao H Q, Gong Y Y, Liu Y L, et al. Progress in Nanocellulose Prepration and Application[J]. Paper and Biomaterials, 2017, 2(4): 65. [百度学术]
Qing Y, Sabo R, Zhu J Y, et al. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches[J]. Carbohydrate Polymers, 2013, 97(1): 226. [百度学术]
Du H, Liu C, Zhang Y, et al. Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization[J]. Industrial Crops and Products, 2016, 94: 736. [百度学术]
Tang X, Zuo M, Li Z, et al. Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents.[J]. ChemSusChem, 2017, 10(13):2696. [百度学术]
Abbott A P, Capper G, Davies D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2002, 9(1):70. [百度学术]
Selkälä T, Sirviö J A, Lorite G S, et al. Anionically stabilized cellulose nanofibrils through succinylation pretreatment in urea–lithium chloride deep eutectic solvent[J]. ChemSusChem, 2016, 9(21):3074. [百度学术]
Liu Y, Guo B, Xia Q, et al. Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7623. [百度学术]
Yu W, Wang C, Yi Y, et al. Comparison of deep eutectic solvents on pretreatment of raw ramie fibers for cellulose nanofibril production[J]. ACS Omega, 2020, 5:5580. [百度学术]
Zhao M, Kuga S, Wu M, et al. Hydrophobic nanocoating of cellulose by solventless mechanical milling[J]. Green Chemistry, 2016, 18(10): 3006. [百度学术]
Wen Y , Liu X , Yuan Z , et al. Preparation and characterization of lignin-containing cellulose nanofibril from poplar high-yield pulp via TEMPO-mediated oxidation and homogenization[J]. ACS Sustainable Chemistry & Engineering, 2019,7:6131. [百度学术]
Yang B, Wang L, Zhang M, et al. Timesaving, High-Efficiency Approaches to Fabricate Aramid Nanofibers (ANFs)[J]. ACS Nano, 2019, 13(7). [百度学术]
Wang C, Yuan Z, Wang A, et al. Ultraviolet light enhanced sodium persulfate oxidation of cellulose to facilitate the preparation of cellulose nanofibers[J]. Cellulose , 2019, 27, 2041. [百度学术]
Pääkkö M,Ankerfors M,Kosonen H,et al.Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels[J].Biomacromolecules,2007,8(6):1934. [百度学术]
ZHAN Zhengfeng, TAO Zhengyi, LIU Zhong, et al. The Research of Microfibrillated Cellulose and Its Application in Paper Industry: a Review[J] China Pulp & Paper,2017,36(7):70. [百度学术]
占正奉,陶正毅,刘 忠,等.纳米微纤丝纤维素及其在造纸中的应用研究现状[J].中国造纸,2017,36(7):70. [百度学术]
ZHANG Sihang, FU Runfang, DONG Liqin,et al.Research Progress on Preparation of Nano Cellulose and Its Application in Composites[J].China Pulp & Paper,2017,36(1):67. [百度学术]
张思航,付润芳,董立琴,等.纳米纤维素的制备及其复合材料的应用研究进展[J].中国造纸,2017,36(1):67. [百度学术]
WEN Yangbing, CHENG Dong, AN Xingye. Preparation of Graft Copolymer of AMPS and Nanofibrillated Cellulose and Its Application in Superabsorbents[J]. China Pulp & Paper,2017,36(3):21. [百度学术]
温洋兵,程 栋,安兴业.纳米纤化纤维素接枝AMPS及其在高吸水树脂中的应用研究[J].中国造纸,2017,36(3):21. [百度学术]
Abitbol T,Rivkin A,Cao Y,et al.Nanocellulose,a tiny fiber with huge applications[J].Current Opinion in Biotechnology,2016,39:76. [百度学术]
Gandini A, Lacerda T M, Carvalho A J F, et al. Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides[J]. Chemical Eviews, 2016, 116(3): 1637. [百度学术]
Liu X, Wen Y,Qu J, et al. Improving salt tolerance and thermal stability of cellulose nanofibrils by grafting modification[J]. Carbohydrate Polymers, 2019,211:257. [百度学术]
Liu X, Qu J, Wang A, et al. Hydrogels prepared from cellulose nanofibrils via ferric ion-mediated crosslinking reaction for protecting drilling fluid[J]. Carbohydrate Polymers, 2019,212:67. [百度学术]
Wågberg L,Decher G,Norgren M,et al.The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes[J].Langmuir,2008,24(3):784. [百度学术]
Martins N C,Freire C S,Pinto R J,et al.Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products[J].Cellulose,2012,19(4):1425. [百度学术]
Galván M V,Peresin M S,Mocchiutti P,et al.Effects of charge ratios of xylan-poly (allylamine hydrochloride) complexes on their adsorption onto different surfaces[J].Cellulose,2015,22(5):2955. [百度学术]
Raj P,Batchelor W,Blanco A,et al.Effect of polyelectrolyte morphology and adsorption on the mechanism of nanocellulose flocculation[J].Journal of Colloid and Interface Science,2016,481:158. [百度学术]
Syverud K,Xhanari K,Chinga-Carrasco G,et al.Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy[J].Journal of Nanoparticle Research,2011,13(2):773. [百度学术]
Xhanari K,Syverud K,Chinga-Carrasco G,et al.Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants[J].Cellulose,2011,18(2):257. [百度学术]
Olszewska A,Junka K,Nordgren N,et al.Non-ionic assembly of nanofibrillated cellulose and polyethylene glycol grafted carboxymethyl cellulose and the effect of aqueous lubrication in nanocomposite formation[J].Soft Matter,2013,9(31):7448. [百度学术]
Lozhechnikova A,Dax D,Vartiainen J,et al.Modification of nanofibrillated cellulose using amphiphilic block-structured galactoglucomannans[J].Carbohydrate Polymers,2014,110:163. [百度学术]
Salem K S, Starkey H R, Pal L, et al. Non-intuitive correlation of cellulose nanofibrils topochemistry to mechanical generation[J].ACS Sustainable Chemistry & Engineering, 2020, 8(3):1471. [百度学术]
Song X, Yang S, Liu X, et al. Transparent and water-resistant composites prepared from acrylic resins ABPE-10 and acetylated nanofibrillated cellulose as flexible organic light-emitting device substrate[J]. Nanomaterials, 2018, 8(9):648. [百度学术]
Cheng L, Zhang D, Gu Z, et al. Preparation of acetylated nanofibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films[J]. International Journal of Biological Macromolecules, 2018, 111:959. [百度学术]
Singh M,Kaushik A,Ahuja D.Surface functionalization of nanofibrillated cellulose extracted from wheat straw: Effect of process parameters[J].Carbohydrate Polymers,2016,150:48. [百度学术]
Rostami J, Mathew, A P, Edlund U. Zwitterionic acetylated cellulose nanofibrils[J]. Molecules, 2019, 24:3147. [百度学术]
Madivoli E,Kareru P,Gachanja A,et al.Adsorption of selected heavy metals on modified nanocellulose[J].International Research Journal of Pure and Applied Chemistry,2016,12(3):1. [百度学术]
Ma J,Wang X,Fu Q,et al.Highly carbonylated cellulose nanofibrous membranes utilizing maleic anhydride grafting for efficient lysozyme adsorption[J].ACS Applied Materials & Interfaces,2015,7(28):15658. [百度学术]
Cunha A G,Freire C,Silvestre A,et al.Preparation of highly hydrophobic and lipophobic cellulose fibers by a straightforward gas-solid reaction[J].Journal of Colloid and Interface Science,2010,344(2):588. [百度学术]
Gousse C,Chanzy H,Cerrada M,et al.Surface silylation of cellulose microfibrils: preparation and rheological properties[J].Polymer,2004,45(5):1569. [百度学术]
Hokkanen S,Repo E,Suopajärvi T,et al.Adsorption of Ni (II),Cu (II) and Cd(II)from aqueous solutions by amino modified nanostructured microfibrillated cellulose[J].Cellulose,2014,21(3):1471. [百度学术]
Hokkanen S,Repo E,Bhatnagar A,et al.Adsorption of hydrogen sulphide from aqueous solutions using modified nano/micro fibrillated cellulose[J].Environmental Technology,2014,35(18):2334. [百度学术]
Gilberto S,Julien B,Alain D.New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate[J].Langmuir,2010,26(1):402. [百度学术]
Niu Q,Gao K,Wu W.Cellulose nanofibril based graft conjugated polymer films act as a chemosensor for nitroaromatic[J].Carbohydrate Polymers,2014,110:47. [百度学术]
Hollertz R,Durán V L,Larsson P A,et al.Chemically modified cellulose micro- and nanofibrils as paper-strength additives[J].Cellulose,2017,24(9):3883. [百度学术]
Stenstad P,Andresen M,Tanem B S,et al.Chemical surface modifications of microfibrillated cellulose[J].Cellulose,2008,5(1):5. [百度学术]
Littunen K,Hippi U,Johansson LS,et al.Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers[J].Carbohydrate Polymers,2011,4(3):039. [百度学术]
Navarro J R,Wennmalm S,Godfrey J,et al.Luminescent nanocellulose platform: from controlled graft block copolymerization to biomarker sensing[J].Biomacromolecules,2016,7(3):101. [百度学术]
Lönnberg H,Larsson K,Lindstrom T,et al.Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites-influence of the graft length on the mechanical properties[J].ACS Applied Materials & Interfaces,2011,3(5):1426. [百度学术]
Silva M,Sanches A,Medeiros E,et al.Nanocomposites of natural rubber and polyaniline-modified cellulose nanofibrils[J].Journal of Thermal Analysis and Calorimetry,2014,117(1):387. [百度学术]
Zhang F,Wu W,Zhang X,et al.Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release[J].Cellulose,2016,23(1):415. [百度学术]
Zhang F,Ren H,Tong G,et al.Ultra-lightweight poly (sodium acrylate) modified TEMPO-oxidized cellulose nanofibril aerogel spheres and their superabsorbent properties[J].Cellulose,2016,23(6):3665. [百度学术]
Bideau B,Bras J,Saini S,et al.Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite[J].Materials Science and Engineering: C,2016,69:977. [百度学术]
Mulyadi A,Deng Y.Surface modification of cellulose nanofibrils by maleated styrene block copolymer and their composite reinforcement application[J].Cellulose,2016,23(1):519. [百度学术]
Benkaddour A,Jradi K,Robert S,et al.Study of the effect of grafting method on surface polarity of tempo-oxidized nanocellulose using polycaprolactone as the modifying compound:esterification versus click-chemistry[J].Nanomaterials,2013,3(4):638. [百度学术]
Mousa M H,Dong Y,Davies I J.Recent advances in bionanocomposites:Preparation,properties,and applications[J].International Journal of Polymeric Materials & Polymeric Biomaterials,2016,65(5):225. [百度学术]
Siró I,Plackett D.Microfibrillated cellulose and new nanocomposite materials:a review[J].Cellulose,2010,17(3):459. [百度学术]
Azeredo H M C,Rosa M F,Mattoso L H C.Nanocellulose in bio-based food packaging applications[J].Industrial Crops & Products,2017,97:664. [百度学术]
Osong S H,Norgren S,Engstrand P.Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose,and applications relating to papermaking:a review[J].Cellulose,2016,23(1):1. [百度学术]
Gumrah Dumanli A.Nanocellulose and its composites for biomedical applications[J].Current Medicinal Chemistry,2017,24(5):512. [百度学术]
Abdul Khalil H P S, Bhat A H, Ireana Yusra A F. Green composites from sustainable cellulose nanofibrils: A review[J]. Carbohydrate Polymers, 2012, 87(2):963. [百度学术]
Liu X, Wang C, Wang A, et al. Application of cellulose and cellulose nanofibers in oil exploration[J]. Paper and Biomaterials, 2019,4(3) :69. [百度学术]
Hoeng F, Denneulin A, Reverdy-Bruas N, et al. Rheology of cellulose nanofibrils/silver nanowires suspension for the production of transparent and conductive electrodes by screen printing[J]. Applied Surface Science, 2017, 394: 160. [百度学术]
Tenhunen T-M,Moslemian O,Kammiovirta K,et al.Surface tailoring and design-driven prototyping of fabrics with 3D-printing:An all-cellulose approach[J].Materials & Design,2018,140:409. [百度学术]
Nguyen D,Hägg D A,Forsman A,et al.Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink[J].Scientific Reports,2017,7(1):658. [百度学术]
Li Q,Wei B,Lu L,et al.Investigation of physical properties and displacement mechanisms of surface-grafted nano-cellulose fluids for enhanced oil recovery[J].Fuel,2017,207:352. [百度学术]
Liu X,Wang A,Wang C,et al.Preparation and performance of salt tolerance and thermal stability cellulose nanofibril hydrogels and their application in drilling engineering[J].Paper and Biomaterials,2019,4(2):10. [百度学术]
Liu X,Yuan Z,Wang A,et al. Cellulose nanofibril-polymer hybrids for protecting drilling fluid at high salinity and high temperature[J]. Carbohydrate Polymers,2020,229:115465. [百度学术]
Li J, Wang X, Zhao Guixia, et al. Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions[J]. Chemical Society Reviews, 2018, 47: 2322. [百度学术]
Liu X, Guan C, Wang D, et al. Graphene-Like Single-Layered Covalent Organic Frameworks: Synthesis Strategies and Application Prospects[J]. Advanced Materials, 2014, 26:6912. [百度学术]
Zhang X, Feng Y, Wang Z, et al. Fabrication of cellulose nanofibrils/UiO-66-NH2 composite membrane for CO2/N2 separation [J].Journal of Membrane Science, 2018,568: 10. [百度学术]
Yang H, Yang L, Wang H, et al. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nature Communications,2019,10: 2101. CPP [百度学术]