摘要
本文首先简要介绍了木质素的来源、分类、结构和性质,其次概括了木质素基水凝胶的制备方法,然后综述了具有吸附性木质素基水凝胶和具有刺激响应性木质素基水凝胶的研究进展,最后展望了木质素基水凝胶的潜在应用。
水凝胶是一种通过交联作用形成的可以发生溶胀作用的三维多孔网络结构的高聚物。水凝胶具有柔性、生物相容性等优点,广泛应用于组织工
木质素是木质纤维的3大组分之一,是自然界含量最丰富的天然可再生芳香族聚合
木质素具有抗氧化、抗微生物、生物降解性、生物相容性等优点。因此,木质素基水凝胶是木质素高值化研究利用的一个新方向。目前,吸附性水凝胶和刺激响应性水凝胶是木质素基水凝胶的研究热点,可用于废水处理、药物缓
根据植物纤维原料的不同,木质素可以分为针叶木木质素、阔叶木木质素和禾本科木质素;根据制浆工艺的不同,木质素又可以分为硫酸盐木质素、木质素磺酸盐、有机溶剂木质素等。不同来源木质素的化学组成、结构和性质都存在明显差
木质素是由苯丙烷单元通过碳碳键和醚键连接而成的具有三维网络结构的天然大分
化学交联法是由交联剂和木质素进行化学反应制备的水凝胶。反应过程中交联剂和木质素形成了稳定的共价键,化学交联法形成过程不可逆,产物具有结构稳定的优点。化学交联木质素基水凝胶的制备方法分为直接交联聚合法和接枝交联聚合法。
木质素或改性木质素与水溶性高聚物直接交联聚合可制备木质素基水凝胶,水溶性高聚物主要包括聚氨酯、聚乙二醇二缩水甘油醚、聚乙二醇等。直接交联聚合法制备的水凝胶可通过调控木质素的含量获得良好的溶胀度、热稳定性和力学性能,并广泛应用于农业、医学等领域。Peng等
Ciolacu等
Li等
Meng等
Musilová等
接枝交联聚合法是在引发剂作用下,将单体(大多数是烯类单体)接枝至木质素上,再与交联剂进行反应制备具有功能性的木质素基水凝胶。根据单体响应性设计制备环境敏感型的刺激响应性木质素基水凝胶。Jin等
Liu等
物理交联法指木质素与交联剂通过物理作用形成的水凝胶。物理作用主要是指氢键、静电作用、范德华力等,因此物理交联木质素基水凝胶的形成过程具有可逆性。与化学交联法相比,物理交联法具有形成速度较快、环境影响小等优点,但该方法所制水凝胶稳定性较差,在特定的条件(如强酸或强碱)下,结构易被破坏。
Li等
Ravishankar等
互穿网络结构法是指将木质素以互穿或半互穿的形式引入水凝胶结构中,木质素与其他物质相互独立,具有此类结构的水凝胶网络密度较大,力学性能较强。Jesus等
Xue等
木质素的引入不仅提高了水凝胶的力学性能,而且丰富了水凝胶的特殊功能。根据木质素基水凝胶的功能,可分为吸附性木质素基水凝胶、刺激响应性木质素基水凝胶等。
木质素分子结构中的羟基、羰基和甲氧基等活性基团,不仅能与有机溶剂中的羟基形成氢键或与脂肪基形成弱相互作用(范德华力),而且能与重金属离子发生螯合(配位),因此木质素基水凝胶对有机溶剂和重金属离子等污染物具有良好的吸附(清除)作用。
Yu等
Sun等
根据外界环境变化做出刺激响应的木质素基水凝胶称为刺激响应性木质素基水凝胶,又称为智能型木质素基水凝胶。根据外界环境变化的不同,又分为温敏性、pH响应性、光敏性、磁敏性等,因此水凝胶的应用方向也不尽相同。
由于pH响应性木质素基水凝胶的溶胀度随着pH值的变化而发生变化,因此其多应用于药物控释、生物医学等领域。袁志林等
Zhu等
除单一响应性外,多重响应性是目前木质素基水凝胶的研究热点和重点,但多重响应性木质素基水凝胶还处于起步阶段,亟需进一步研究。Liu等
近几十年来,生物质资源由于可再生、生态友好性、可生物降解性等优点引起人们的关注。从前期的基础研究扩展到现在的应用领域,包括组织工程、生物医学、农业等。以可再生的木质素为原料制备水凝胶是木质素高值化利用研究的热点和难点。虽然木质素基水凝胶具有可再生、可生物降解等优点和广阔地应用前景,但仍面临着亟待解决的瓶颈问题:①进一步解构木质素的组分及结构。木质素不均一性和结构复杂性,导致其水凝胶的结构和性质存在缺陷,限制了木质素基水凝胶的应用范围。②进一步提高木质素基水凝胶的力学性能。目前,木质素基水凝胶具有一定的力学强度,但与实际应用要求仍然存在较大差距,限制了木质素基水凝胶的广泛应用。③进一步扩大木质素基水凝胶的应用。目前,木质素基水凝胶主要用于废水中重金属离子的去除、药物控释等,通过赋予新性能拓展其应用领域,如3D打印等前沿领域。
参考文献
Bruggeman K F, Williams R J, Nisbet D R . Dynamic and Responsive Growth Factor Delivery from Electrospun and Hydrogel Tissue Engineering Materials[J]. Advanced Healthcare Materials, 2017, 7(1): 1700836. [百度学术] [Google Scholar]
Güner O Z, Cam C, Arabacioglu-Kocaaga B, et al . Theophylline-loaded pectin-based hydrogels.I.Effect of medium pH and preparation conditions on drug release profile[J]. Journal of Applied Polymer Science, 2018, 135(38): 46731. [百度学术] [Google Scholar]
Fawole O, Dolai S, Leu H Y, et al . Remote Microwave and Field-Effect Sensing Techniques for Monitoring Hydrogel Sensor Response[J]. Micromachines, 2018, 9(10): 526. [百度学术] [Google Scholar]
Li Y, Cui W, Liu L, et al . Removal of Cr(VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction[J]. Applied Catalysis B: Environmental, 2016, 199: 412. [百度学术] [Google Scholar]
ZHOU Yimin, FU Shiyu, YANG Shaoping, et al . Study on the Swelling Kinetics of pH-sensitive Cellulose-based Hydrogels[J]. Transactions of China Pulp and Paper, 2012, 27(2): 40. [百度学术] [Google Scholar]
周益民, 付时雨, 杨邵平, 等 . 纤维素基水凝胶的溶胀动力学研究[J]. 中国造纸学报, 2012, 27(2): 40. [百度学术] [Google Scholar]
Park S, Kim S H, Kim J H, et al . Application of cellulose/lignin hydrogel beads as novel supports for immobilizing lipase[J]. Journal of Molecular Catalysis B: Enzymatic, 2015, 119: 33. [百度学术] [Google Scholar]
CHEN Xueshuai, WANG Huili, LIU Wenxia, et al . Preparation of AKD Emulsion by Using Chitosan-Sodium Alginate Gel Particles[J]. China Pulp & Paper, 2016, 35(12): 7. [百度学术] [Google Scholar]
陈学帅, 王慧丽, 刘温霞, 等 . 壳聚糖-海藻酸钠凝胶微粒稳定的AKD乳液[J]. 中国造纸, 2016, 35(12): 7. [百度学术] [Google Scholar]
LUO Bin, GUO Chenyan, JIA Zhuan, et al . Progress in the Application of Lignin in the Preparation of Graphene Composites[J]. China Pulp & Paper, 2019, 38(4): 55. [百度学术] [Google Scholar]
罗 斌, 郭晨艳, 贾 转, 等 . 木质素制备石墨烯复合材料的应用进展[J]. 中国造纸, 2019, 38(4): 55. [百度学术] [Google Scholar]
JIA Zhuan, WAN Guangcong, LI Mingfu, et al . Progress in Chemical Modification of Lignin and Its Application in Phenolic Resins Adhesive Preparation[J]. China Pulp & Paper, 2018, 37(3): 72. [百度学术] [Google Scholar]
贾 转, 万广聪, 李明富, 等 . 化学改性在木素基酚醛树脂胶黏剂制备中的研究进展[J]. 中国造纸, 2018, 37(3): 72. [百度学术] [Google Scholar]
JIA Zhuan, WAN Guangcong, ZHANG Qingtong, et al . Phenolation of Bagasse Kraft Lignin for Application in Lignin-based Phenol Formaldehyde Adhesives[J]. China Pulp & Paper, 2018, 37(9): 7. [百度学术] [Google Scholar]
贾 转, 万广聪, 张清桐, 等 . 酚化改性蔗渣硫酸盐木素制备酚醛树脂胶黏剂[J]. 中国造纸, 2018, 37(9): 7. [百度学术] [Google Scholar]
Bernardini J, Cinelli P, Anguillesi I, et al . Flexible polyurethane foams green production employing lignin or oxypropylated lignin[J]. European Polymer Journal, 2015, 64: 147. [百度学术] [Google Scholar]
Younesi-Kordkheili H, Kazemi-Najafi S, Eshkiki R B, et al . Improving urea formaldehyde resin properties by glyoxalated soda bagasse lignin[J]. Holz als Roh-und Werkstoff, 2014, 73(1): 77. [百度学术] [Google Scholar]
Zhang Ziyin, Liu Tong, Liu Shuainan, et al . Preparation and Mechanical Properties of Lignin-Epoxy Resin Composite Reinforced by Wood Flour[J]. Chemistry and Adhesion, 2013, 3(35): 26. [百度学术] [Google Scholar]
张紫茵, 刘 彤, 刘帅男, 等 . 木粉增强木质素/环氧树脂复合材料的制备与力学性能[J]. 化学与黏合, 2013, 3(35): 26. [百度学术] [Google Scholar]
Liang F B, Song Y L, Huang C P, et al . Synthesis of Novel Lignin-Based Ion-Exchange Resin and Its Utilization in Heavy Metals Removal[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1267. [百度学术] [Google Scholar]
LI Meng, WANG Zhen, ZHAI Fan, et al . Preparation of Lignin Based Heavy Metal Adsorbent by Lignin Aminating Modification[J]. China Pulp & Paper, 2016, 35(5): 80. [百度学术] [Google Scholar]
李 萌, 王 振, 翟 凡, 等 . 木素胺化改性制备重金属吸附剂[J]. 中国造纸, 2016, 35(5): 80. [百度学术] [Google Scholar]
WANG Xiaohong, YAN Wei, ZHANG Pengfei, et al . Study on the Synthesis of Lignin Quaternary Ammonium Salt Surfactant[J]. China Pulp & Paper, 2012, 31(1): 10. [百度学术] [Google Scholar]
王晓红, 闫 伟, 张鹏飞, 等 . 木质素季铵盐表面活性剂的合成[J]. 中国造纸, 2012, 31(1): 10. [百度学术] [Google Scholar]
Hosseinaei O, Harper D P, Bozell J J, et al . Improving Processing and Performance of Pure Lignin Carbon Fibers through Hardwood and Herbaceous Lignin Blends[J]. International Journal of Molecular Sciences, 2017, 18(7): 1410. [百度学术] [Google Scholar]
Culebras M, Beaucamp A, Wang Y, et al . Biobased Structurally Compatible Polymer Blends Based on Lignin and Thermoplastic Elastomer Polyurethane as Carbon Fiber Precursors[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8816. [百度学术] [Google Scholar]
Jin X Y, He C W, Liu X R, et al . Effect of Cellulose Crystal Content on the Mechanical Property of Nano-Crystalline Cellulose/Lignin Composite Fibrous Film[J]. Key Engineering Materials, 2017, 727: 527. [百度学术] [Google Scholar]
Yang W, Rallini M, Wang D Y, et al . Role of lignin nanoparticles in UV resistance, thermal and mechanical performance of PMMA nanocomposites prepared by a combined free-radical graft polymerization/masterbatch procedure[J]. Composites Part A: Applied Science and Manufacturing, 2017, 107: 61. [百度学术] [Google Scholar]
Larraneta E, Imízcoz M, Toh J X, et al . Synthesis and Characterization of Lignin Hydrogels for Potential Applications as Drug Eluting Antimicrobial Coatings for Medical Materials[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9037. [百度学术] [Google Scholar]
Kai D, Zhang K, Jiang L, et al . Sustainable and antioxidant lignin-polyester copolymers and nanofibers for potential healthcare applications[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 6016. [百度学术] [Google Scholar]
Lv Xiaojing . Alkali-based pretreatment and enzymatic hydrolysis of lignocellulosic biomass and their related mechanisms[D]. Guangzhou:Jinan University, 2018. [百度学术] [Google Scholar]
吕晓静 . 基于碱的木质纤维素预处理和酶解及相关机理研究[D]. 广州:暨南大学, 2018. [百度学术] [Google Scholar]
Lu Y, Wei X Y, Cao J P, et al . Characterization of a bio-oil from pyrolysis of rice husk by detailed compositional analysis and structural investigation of lignin[J]. Bioresource Technology, 2012, 116(7): 114. [百度学术] [Google Scholar]
He X, Xie J, Wei Y, et al . Preparation of Super-Absorbents Composites from Kaolin/Sodium Lignosulfonate-g-AA-AM[J]. Scientia Silvae Sinicae, 2011, 47(8): 134. [百度学术] [Google Scholar]
Peng Z, Chen F . Synthesis and Properties of Lignin-Based Polyurethane Hydrogels[J]. International Journal of Polymeric Materials, 2011, 60(9): 674. [百度学术] [Google Scholar]
Ciolacu D, Oprea A M, Anghel N, et al . New cellulose–lignin hydrogels and their application in controlled release of polyphenols[J]. Materials Science & Engineering C, 2012, 32(3): 452. [百度学术] [Google Scholar]
Li M, Jiang X, Wang D, et al . In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application[J]. Elsevier, 2019, 177: 370. [百度学术] [Google Scholar]
Meng Y, Liu X, Li C, et al . Super-swelling lignin-based biopolymer hydrogels for soil waterretention from paper industry waste[J]. International Journal of Biological Macromolecules, 2019, 135: 815. [百度学术] [Google Scholar]
Musilová L, Mrácek A, Kovalcik A, et al . Hyaluronan hydrogels modified by glycinated kraft lignin: Morphology, swelling, viscoelastic properties and biocompatibility[J]. Carbohydrate Polymers, 2018, 181: 394. [百度学术] [Google Scholar]
Jin C, Song W, Liu T, et al . Temperature and pH responsive hydrogels using methacrylated lignosulfonate crosslinker: Synthesis, characterization and properties[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1763. [百度学术] [Google Scholar]
Liu Y, Huang H, Han K, el at . High-performance lignin-based water-soluble macromolecular photoinitiator for the fabrication of hybrid hydrogel[J]. ACS Sustainable Chemistry & Engineering, 2019, 7: 4004. [百度学术] [Google Scholar]
Yao Q, Xie J, Liu J, et al . Adsorption of lead ions using a modified lignin hydrogel[J]. Journal of Polymer Research, 2014, 21(6): 465. [百度学术] [Google Scholar]
Li F F, Wang X L, Yuan T Q, et al . Lignosulfonate-modified graphene hydrogel with ultrahigh adsorption capacity for Pb(II) removal[J]. Journal of Materials Chemistry A, 2016, 4(30): 11888. [百度学术] [Google Scholar]
Ravishankar K, Venkatesan M, Desingh P R, et al . Biocompatible hydrogels of chitosan-alkali lignin for potential wound healing applications[J]. Materials Science & Engineering C, 2019, 102: 447. [百度学术] [Google Scholar]
Jesus E . Penaranda A, Sabino M A . Effect of the presence of lignin or peat in IPN hydrogels on the sorption of heavy metals[J]. Polymer Bulletin, 2010, 65(5): 495. [百度学术] [Google Scholar]
Xue B L, Wen J L, Sun R C . Ethanol organosolv lignin as a reactive filler for acrylamide-based hydrogels[J]. Journal of Applied Polymer Science, 2015, 132(40): 42638. [百度学术] [Google Scholar]
Yu C, Wang F, Zhang C, et al . The synthesis and absorption dynamics of a lignin-based hydrogel for remediation of cationic dye-contaminated effluent[J]. Reactive and Functional Polymers, 2016, 106: 137. [百度学术] [Google Scholar]
Sun X F, Hao Y W, Cao Y Y, el at . Superadsorbent hydrogel based on lignin and montmorillonite for Cu(II) ions removal from aqueous solution[J]. International Journal of Biological Macromolecules, 2019, 127: 511. [百度学术] [Google Scholar]
Yuan Zhilin, Chen Haishan, Li Ziyuan, et al . Synthesis of pH-responsive hydrogel based on bagasse lignin and controlled release of protein[J]. Guihait, 2017, 37(2): 248. [百度学术] [Google Scholar]
袁志林, 陈海珊, 李子院, 等 . pH响应型蔗渣木质素水凝胶的制备及其对蛋白质的控释性能[J]. 广西植物, 2017, 37(2): 248. [百度学术] [Google Scholar]
Zhu W, Lu J, Dai L . Multifunctional pH-Responsive Sprayable Hydrogel Based on Chitosan and Lignin-Based Nanoparticles[J]. Particle & Particle Systems Characterization, 2018, 35(12): 1800145. [百度学术] [Google Scholar]
Liu W, Ye Z H, Liu D X, et al . Hydrogels Derived from Lignin with pH Responsive and Magnetic Properties[J]. BioResources, 2018, 13(4): 7281. CPP [百度学术] [Google Scholar]