摘要
近年来,低共熔溶剂(DES)以其高稳定性、高效率、选择性及可回收等优良性能成为代替有机溶剂与离子液体分离木质素的研究热点。本文结合最新DES分离木质素的研究报道,从组成、机理、DES类型等方面对DES分离木质素的研究进展进行综述与展望,以期为木质素高效分离与利用提供新的研究思路。
木质素作为自然界中仅次于纤维素的第二大丰富的生物资源,其是由苯丙烷结构单元通过碳碳键和醚键连接而成的具有三维网状结构的生物高分子,被认为是最具有潜力替代石化行业生产生物基芳香化合物的有机
制浆过程中采用化学法蒸煮可实现木质素、纤维素和半纤维素的分离,从而得到碱木质素和木质素磺酸盐等工业木质
HBD | HBA |
---|---|
乳酸(Lactic acid) | 丙氨酸(Alanine ) |
羟基丁二酸(Malic acid) | 三甲铵乙内酯(Betaine) |
草酸(Oxalic acid) | 氯化胆碱(Choline chloride) |
烟酸(Nicotinic acid) | 甘氨酸(Glycine) |
甘油(Glycerol) | 脯氨酸(Proline) |
木糖醇(xylitol) | 组氨酸(Histidine) |
随着研究发现,多种含有氢键受体的离子液体都可以溶解植物纤维原料,且使用过后可以回收利
低共熔溶剂(Deep Eutectic Solvents,DES)是指由一定摩尔比的氢键受体(如季铵盐)和氢键供体(如酰胺、羧酸和多元醇等化合物)组合而成的二元或三元低共熔混合
DES的合成只需要将各组分进行简单组合,制备温度50~60℃,搅拌后在常温状态下呈透明液体,不需要进行其他纯化处
Francisco等
HBD | HBA | 摩尔比 | 制备温度/℃ | 木质素溶解度/% |
---|---|---|---|---|
乳酸 | 甜菜碱 | 2 1 | 60 | 12.03 |
组氨酸 | 9 1 | 60 | 11.82 | |
甘氨酸 | 9 1 | 60 | 8.77 | |
丙氨酸 | 9 1 | 60 | 8.47 | |
氯化胆碱 | 10 1 | 60 | 11.82 | |
氯化胆碱 | 5 1 | 60 | 7.77 | |
氯化胆碱 | 2 1 | 60 | 5.38 | |
氯化胆碱 | 1.3 1 | 60 | 4.55 | |
苹果酸 | 脯氨酸 | 1 3 | 100 | 14.90 |
脯氨酸 | 1 2 | 100 | 6.09 | |
氯化胆碱 | 1 1 | 100 | 3.40 | |
草酸 | 氯化胆碱 | 1 1 | 60 | 3.62 |
DES通过减压蒸馏和冷冻干燥等简单的方法便可实现回收利用。Liu等
DES的作用机理是通过组成成分之间形成的氢键作用和范德华力阻碍材料的再结晶,降低体系的熔点。氯化胆碱季铵盐与HBD间的相互作用示意图如

图1 氯化胆碱季铵盐与HBD间的相互作用
基于HBD和HBA相互作用的原理,DES提供了一种温和的酸碱催化机制,在苯基丙烷单元之间选择性断裂不稳定的醚键,使木质素解聚并从生物质中分离出来。这种化学反应可以在保持天然木质素大部分性质和活性的同时,生成低分子质质量的木质素产
Yiin等
目前合成的大部分二元DES对木质素的溶解效果均较好。Alvarez-Vasco等
溶剂类型对二元DES的离子强度也会产生一定的影响,因此评价二元DES体系pH值对分离效果的影响至关重要。Tan等
以上研究表明,二元DES对木质素分离起到了一定的作用,深入研究发现,基于有机酸的二元DES具有生物质加工的潜力,提取的颗粒状木质素可用于生产精细化学品。且二元DES处理木质素后,还可实现其回收及循环使
二元DES通过提高溶剂体系中氢键强度来提高木质素分离效率,受此启发,学者开始研究双氢键供体所组成的三元DES对木质素分离的可能性。Xing等
然而双氢键供体的三元DES对木质素-碳水化合物复合体(LCC)的裂解和木质素的分离效果不理想。研究者便从反应机理与改变溶剂性质等角度出发,探索DES溶剂体系与生物质解聚的物理、化学反应机理,提出了酸性多位点受氢的思路,设计新的三元DES以增强木质素分离效果。Xia等
木质素在非极性溶剂中具有很高的溶解性, Kandanelli等
Jeong等
DES溶剂体系的可设计性强,但目前基于三元DES的研究报道并不多,三元DES的开发也是木质素分离上的重点研究内容,通过从溶剂和机理角度增加新的组分形成新的三元DES,来弥补二元DES的缺陷,以达到更好的木质素分离效果。然而三元DES与二元DES相比,其机理与组成都变得更加复杂,还需进行系统研究以实现生物质组分高效分离与清洁再利用。
在最近的研究工作中,微波辅助技术被认为是一种可替代加热的技术,具有反应时间短,提取效率高的优点。微波辅助与极性分子相互作用,实现反应体系的快速传质优化,是一种很有前途的木质纤维素处理辅助技
对于DES同样可以使用微波辅助技术来提高木质素分离效率。Liu等
微波辅助作为一项有效的辅助技术,其为快速有效的木质素生物精炼方法提供借鉴,微波辅助DES分离木质素工艺将有助于提高生物质精炼的经济效益。
低共熔溶剂(DES)分离木质素的发展由最开始的二元DES组合中最佳分离效果的探索,到改善二元DES缺点进行三元DES的设计以及微波辅助手段技术在DES分离木质素中的应用。DES相比于传统木质素分离工艺,具有低成本、高效率、可再生等优点,因此有广阔的工业化应用前景。
为提高DES分离木质素效率,今后研究内容应重点关注以下几个方面:生物质原料内部结构复杂,DES处理前需要先进行结构的破坏,如与传统高温气爆预处理相结合,能大大提高木质素分离的效果;DES与传统方法的耦合也是提高DES分离木质素效率的一个新的思路;对常规二元DES溶剂性质还需进行更深入的分析,考虑DES黏度、电导率等因素对木质素分离的影响;改善已有二元DES组合的缺点,进行三元DES的设计或开发多功能三元DES仍是DES分离木质素的研究热点问题;外界辅助DES分离木质素的报道较少,DES结合超高压、超声波及电化学分离木质素的可行性还有待进一步探索。
参考文献
Chatterjee S , Saito T . Lignin-Derived Advanced Carbon Materials[J]. Chemsuschem, 2016, 8(23): 3941.
Grossman A, Wilfred V . Lignin-based polymers and nanomaterials[J]. Current Opinion in Biotechnology, 2019, 56: 112.
Jin Fuming, Wu Shubin . Lignin Extraction from Black Liquor and its Application Prospects in Pulp Mills[J].Paper and Biomaterials, 2016, 1(2): 45.
Lancefield C S , Panovic I , Deuss P J , et al . Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: towards complete biomass valorisation[J].Green Chemistry, 2017, 19(1): 202.
Meng X, Parikh A, Seemala B, et al . Characterization of fractional cuts of co-solvent enhanced lignocellulosic fractionation lignin isolated by sequential precipitation[J]. Bioresource Technology, 2019, 272: 202.
Kim J Y , Shin E J , Eom I Y , et al . Structural features of lignin macromolecules extracted with ionic liquid from poplar wood[J].Bioresource Technology, 2011, 102(19): 9020.
Wang Y, Wei L, Li K, et al . Lignin dissolution in dialkylimidazolium-based ionic liquid–water mixtures[J]. Bioresource Technology, 2014, 170: 499.
Jiang B , Cao T , Gu F , et al . Comparison of the Structural Characteristics of Cellulolytic Enzyme Lignin Preparations Isolated from Wheat Straw Stem and Leaf[J]. ACS Sustainable Chemistry & Engineering, 2016, 5(1): 342.
Schutyser W, Renders T, Van d B S, et al . Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading[J].Chemical Society Reviews, 2018, 47(3): 852.
Calvaruso G, Clough M T, Rinaldi R . Biphasic extraction of mechanocatalytically-depolymerized lignin from water-soluble wood and its catalytic downstream processing[J].Green Chemistry, 2017, 19(12): 2803.
Shen Y, Sun J K, Yi Y X, et al . One-pot synthesis of levulinic acid from cellulose in ionic liquids[J].Bioresource Technology, 2015, 192: 812.
Xu G C, Ding J C, Han R Z, et al . Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation[J].Bioresource Technology, 2016, 203: 364.
Alvarez-Vasco C, Ma R, Quintero M, et al . Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization[J]. Green Chemistry, 2016, 18(19): 5133.
Hammond O S, Bowron D T, Edler K J . Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling[J].Green Chemistry, 2016, 18(9): 2736.
ZHANG Chengwu . Study on the pretreatment of lignocellulose by deep eutectic solvents[D].Tianjin: Tianjin University, 2016.
张成武 . 低共熔溶剂预处理木质纤维素的研究[D]. 天津: 天津大学, 2016.
Francisco M, Bruinhorst A v d, Kroon M C . New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing[J]. Green Chemistry, 2012, 14(8): 2153.
Liu P, Hao J W, Mo L P, et al . Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions[J]. RSC Advances, 2015, 5(60): 48675.
Gore S, Baskaran S, Konig B . Fischer indole synthesis in low melting mixtures[J]. Organic Letters, 2012, 14(17): 4568.
Liang X, Fu Y, Chang J . Effective separation, recovery and recycling of deep eutectic solvent after biomass fractionation with membrane-based methodology[J]. Separation and Purification Technology, 2019, 210: 409.
Francisco M, Bruinhorst A v d, Kroon M C . Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents[J]. Angew Chem Int Ed Engl, 2013, 52(11): 3074.
Lynam J G , Kumar N , Wong M J . Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density[J]. Bioresource Technology, 2017, 238: 684.
Li W , Amos K , Li M , et al . Fractionation and characterization of lignin streams from unique high-lignin content endocarp feedstocks[J]. Biotechnology for Biofuels, 2018, 11(1): 304.
Yiin C L, Quitain A T, Yusup S, et al . Characterization of natural low transition temperature mixtures (LTTMs): green solvents for biomass delignification[J]. Bioresource Technology, 2016, 199: 258.
Kumar A K, Parikh B S, Pravakar M . Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue[J]. Environmental Science and Pollution Research, 2016, 23(10): 9265.
Abbott A P, Bell T J, Handa S, et al . Cationic functionalisation of cellulose using a choline based ionic liquid analogue[J]. Green Chemistry, 2006, 8(9): 784.
Zhang C W, Xia S Q, Ma P S . Facile pretreatment of lignocellulosic biomass using deep eutectic solvents[J].Bioresource Technology, 2016, 219: 1.
Nor N A M, Mustapha W A W, Hassan O . Deep eutectic solvent (DES) as a pretreatment for oil palm empty fruit bunch (OPEFB) in sugar production[J]. Procedia Chemistry, 2016, 18: 147.
Tan Y T, Ngoh G C, Chua A S M . Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch[J]. Industrial Crops and Products, 2018, 123: 271.
New E K, Wu T Y, Lee C B T L, et al . Potential use of pure and diluted choline chloride-based deep eutectic solvent in delignification of oil palm fronds[J]. Process Safety and Environmental Protection, 2019, 123: 190.
Li Li-fen . Extraction, modification and degradation of lignin with choline chloride-based deep eutectic solvents[D].Harbin: Northeast Forestry University, 2015.
李利芬 . 基于氯化胆碱低共熔溶剂的木质素提取改性和降解研究[D].哈尔滨: 东北林业大学, 2015.
FU Shiyu . Progress in Cellulose Research[J]. China Pulp & Paper, 2019, 38(6): 54.
付时雨 . 纤维素的研究进展[J]. 中国造纸, 2019, 38(6): 54.
Xing W, Xu G, Dong J, et al . Novel dihydrogen-bonding deep eutectic solvents: Pretreatment of rice straw for butanol fermentation featuring enzyme recycling and high solvent yield[J]. Chemical Engineering Journal, 2018, 333: 712.
Xia Q, Liu Y, Meng J, et al . Multiple hydrogen bond coordination in three-constituent deep eutectic solvent enhances lignin fractionation from biomass[J].Green Chemistry, 2018, 20(12): 2711.
Kandanelli R, Thulluri C, Mangala R, et al . A novel ternary combination of deep eutectic solvent-alcohol (DES-OL) system for synergistic and efficient delignification of biomass[J]. Bioresource Technology, 2018, 265: 573.
Jeong K M, Lee M S, Nam M W, et al . Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media[J].Journal of Chromatography A, 2015, 1424: 10.
Sharma M, Mukesh C, Mondal D, et al . Dissolution of α-chitin in deep eutectic solvents[J]. RSC Advances, 2013, 3(39): 18149.
Liu Y , Chen W , Xia Q , et al . Efficient Cleavage of Lignin-Carbohydrate Complexes and Ultrafast Extraction of Lignin Oligomers from Wood Biomass by Microwave-Assisted Treatment with Deep Eutectic Solvent[J].Chem. Sus. Chem., 2017, 10(8): 1692.
Chen Z, Wan C . Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment[J]. Bioresource Technology, 2018, 250: 532.
Gaudino E C , Tabasso S , Grillo G , et al . Wheat straw lignin extraction with bio-based solvents using enabling technologies[J].Comptes Rendus Chimie, 2018, 21(6): 563.
CPP