1 阻燃剂在造纸行业中的发展过程
在造纸行业中,最初是通过填料添加的方式将阻燃剂加入到纸浆中使纸张具有阻燃性,但这会使纸张丧失一些其本应具有的强度或柔软度等力学性能,甚至无法达到纸张的使用要求。采用化学方法,将阻燃元素与纤维素结合起来,既能保证纸张本身的强度与稳定性,同时使得阻燃元素在纸张中的分散程度较填料添加方法更为均匀,在减少用量的同时提高了阻燃效率。涂布技术虽然满足了纸张的耐火要求,对纸张内部并未做任何处理使得其能保持原有的物理性能,但由于阻燃涂层存在纸张表面,涂层一旦破裂,纸张的阻燃性会大大降低。一些难燃纤维也可以提升纸张的耐火性能,如金属纤维、石棉纤维、玻璃纤维、羟基磷灰石纤维、碳纳米管纤维等。
2 阻燃剂的作用机理
阻燃剂的作用机理是限制火焰燃烧三要素中的一种或多种来达到阻燃的目的,即控制材料温度、隔绝助燃气体和隔离可燃物质,作用机理可分为吸热效应、稀释效应、抑制效应和隔离效应4
种[5] 。最早的阻燃剂一般仅能达到控制其中的一种或两种要素,效果并不理想。早期的阻燃剂中主要防火物质是含有卤素的化合物,在高温环境下会释放出有毒的气体,因此这类阻燃剂在日趋加大的环境压力下已经渐渐退出了舞台,取而代之的是以磷、氮为主要阻燃物质的新型阻燃剂。磷-氮型阻燃剂受热后分解在降低纸张温度的同时促进纤维素脱水炭化,在减少燃烧放热的同时形成的致密碳化层也起到一定的隔绝空气的作用,另外受热释放的不燃氮气较卤素蒸汽会更加清洁。3 阻燃评价方法
纸类的阻燃性能可通过燃烧实验法、极限氧指数法、锥形量热法和热重分析法等进行评价。
3.1 燃烧实验法
燃烧实验法是按照UL-94燃烧实验标准,其中HB等级为最低标准,实验方法采用垂直/水平燃烧实验法;UL-94 V-0、V-1、V-2、5V等级采用垂直燃烧实验。
UL-94 V-0评定方法为从点燃样品把火焰移开后,能快速自熄到在10 s之内无燃烧的熔体滴落;UL-94 V-1要求的自熄时间为30 s。UL-94 V-1阻燃等级允许熔体滴落在棉花垫上,但不能点燃棉花;UL-94 V-2和V-1相同,只是它允许燃烧着的熔滴将下面距离一英尺的棉花点燃;UL-94 5V是最严格的检测方法,实验要求火焰长度为5 cm,对测试样品施加5次燃烧,其间不允许有熔滴滴落,不允许测试样品有明显的扭曲,也不能产生任何被烧出来的洞。
根据GB/T 14656—2009阻燃纸和纸板燃烧性能实验方法,实验采用垂直燃烧,距离样品边缘 50 mm,4份样品裁取尺寸为210 mm×70 mm。将样品固定在样品架上,施焰12 s后立即移开火焰,并记录续燃时间及灼燃时间。然后取下试样,除去炭渣后测量从样品底边到缺损部分顶点的垂直距离,记为炭化长度。若炭化长度≤115 mm,续燃时间≤5 s,灼燃时间≤60 s,则视为符合实验标准。
3.2 极限氧指数法
极限氧指数的评价标准参考GB/T 5454—1997,试样采用尺寸为150 mm×58 mm;横纵向裁取各15块。实验时所采用的初始氧气浓度可设定为18%,试样点燃后立刻自熄、续燃、阴燃或续燃和阴燃时间少于2 min,或损毁长度达不到40 mm时均视为氧气浓度过低,需提高氧气浓度,反之则需要降低氧气浓度。两种氧气浓度之差记为d,记最后一次氧气浓度为cF,通过公式(1)计算极限氧指数。
LOI=cF+Kd (1)
式中,LOI为极限氧指数,%;cF为最后一次实验的氧气浓度,%;d为氧气浓度差值,%;K为系数。
对照标准确定样品可燃性,即氧指数小于20%为易燃品;氧指数大于25%小于30%为难燃;大于35%为不燃品。一般纤维素的氧指数在19%左右,属易燃品。
3.3 锥形量热法
锥形量热仪评价法指的是当试样暴露于锥形加热器的热源时,锥形量热仪可测量试样的引燃时间(TTI)、总热释放量(THR,MJ/
m2 )、热释放速率(HRR,kW/m2 )、峰值热释放速率(pkHRR,kW/m2 )、试样的初始质量和残余质量(kg)、平均存放燃烧值(MJ/kg)、质量损失速率(MLR,g/s)、烟雾释放速率(SPR,m2 /s)、比消光面积(SEA,m2 /kg)、有效燃烧热(EHC,MJ/kg)、有毒气体(一氧化碳、二氧化碳)生成速率等[6] 。通过综合HRR、pkHRR和TTI,可以定量地判断出材料的燃烧性能。当HRR、pkHRR值均有所降低,而TTI值升高时,可以认为该材料的阻燃性能有所提升。由EHC、HRR和SEA等性能参数可分析材料在气相阻燃方面的效果。当EHC降低、SEA增加、而HRR下降则表明材料的阻燃性有所提高。若EHC变化不大,而平均HRR下降,说明MLR亦下降,这属于凝聚相阻燃。该方法虽无相关标准规范,但其得出的数据可以直观地判断出样品的燃烧性能。3.4 热重分析法
热重分析法(TG或TGA)是指在程序控制温度下测量样品的质量与温度变化关系的一种热分析技术,主要用来研究材料的热稳定性和组分。热重分析法在实际的材料分析中经常与其他分析方法联用进行综合热分析,全面准确分析材料的阻燃性能。热重分析法的重要特点是定量性强,能准确地测量物质的质量变化及变化的速率。通过分析热重的残留物含量和初始分解温度可以间接地反映出材料的阻燃性能。材料热重分析后的残留量升高,可以说明材料在燃烧过程中损失的质量减少,即总热释放量减少,说明其阻燃性提高;初始分解温度降低可以说明材料受热提前发生炭化现象从而达到阻燃的目的。
在评价样品燃烧性能时通常综合采用以上方法中的一种或几种,以更加精确地评估阻燃性。
4 提高纸类阻燃性能的技术
4.1 纤维素的阻燃改性与难燃纤维
对纸浆纤维进行阻燃改性,一般是通过将纤维素与金属离子结合的方式来实现阻燃的目的。Costes等
人[7] 在熔融尿素中磷化纤维素(MCC-P),发现样品的热残留质量较纳米微晶纤维素(NCC)提高了20%左右;在UL-94燃烧实验中添加20%MCC-P的聚乳酸(PLA)样品可达到V-0阻燃等级。Gaan等人[8] 和Katsuura等人[9] 的实验也证明了磷化纤维素的阻燃性。Ghanadpour等人[10] 采用磷酸改性阴离子纳米纤维素与氨基化阳离子纳米纤维素进行逐层装配制备了阻燃薄膜。该薄膜的热重残留量提高了40%左右,在UL-94标准下进行燃烧实验结果符合V-0级阻燃等级。Zhang等
人[11] 将锌离子阻燃剂接枝到经过马来酸酐改性的纤维上,制备出不同取代度的纤维素-锌纤维,发现纤维的LOI值从19%上升至30%;并且锌离子阻燃剂添加量在4.96%时,点火时间从6 s增长到59 s;总热释放量(THR)从18.89 MJ/m2 降低至1.89 MJ/m2 ;热释放速率(HRR)从88.13 kW/m2 下降至29.43 kW/m2 。Shi等
人[12] 制备出了纤维素-钠纤维和纤维素-钙纤维,其LOI值分别为31%和30%;改性纤维素纤维的热释放速率在100 s时降低到50 kW/m2 ;总热释放量在200 s时降低到10 MJ/m2 左右;产生的热重残留量增加了20%左右。同样Xu等人[13] 和Gao等人[14] 的实验也证实了纤维素-钠纤维的阻燃性能,这两个小组还合成了纤维素-钾纤维,实验发现热重分析(TG)残留量增加了20%,在钾离子含量达到16%时,纤维素-钾纤维的LOI测定值为30%。Raabe等
人[15] 采用溶胶-凝胶法将纳米SiO2 粒子搭载到纤维上,样品的热重残留量提高了20%左右,并且阻止了纤维素的分解,提高了纤维素的热稳定性。Song等人[16] 研究纳米SiO2 在纤维素中的添加量为8%时,TGA测量结果最大失重温度为345.4℃,高于未经处理的纤维素(323.3℃),提高了纤维的热稳定性。Wang等人[17] 的实验证实在纤维素表面搭载纳米TiO2 也可以起到增加热稳定性的作用。Li等
>人[18] 将分散于水中的微胶囊MgO结合到纤维素上制得高分散性的纤维素-镁纤维,该纤维的LOI升高至38%;当MgO的有效含量达到0.72%时,HRR曲线峰值从180.52 kW/m2 下降至91.25 kW/m2 ;总热释放量从13.81 MJ/m2 降至6.85 MJ/m2 。Nechyporchuk等人[19] 采用阳离子改性的纳米微纤化纤维素(NFC),通过界面络合形成具有二氧化硅纳米颗粒(SNP)外壳的纳米纤维(如图2所示),该纤维在受热情况下表面发生炭化并起到隔热作用,使得其耐火性能有了显著提高。某些难燃纤维能够与浆料混合抄造以使得纸张获得阻燃性,Zhang等
人[20] 采用原位合成法将碳酸镁丝与纤维素结合抄造阻燃纸,热重残留量升高了20%。Chen等人[21] 采用超细羟磷灰石纳米纤维作为硅气凝胶的支架,制备了新型纳米复合纸(如图3所示)。在硅气凝胶含量为50%的情况下,其峰值热释放速率(HRR)仅为33.1 W/g;在800℃的情况下,该材料的热重损失才有所降低,具有显著的热稳定性。Zhu等人[22] 采用超顺羟磷灰石纳米线制备出具有良好耐火性的特殊纸种,可以耐受1000℃的高温。4.2 添加阻燃剂作为填料
Chen等
人[23] 将镁盐晶体丝作为填料添加到纸张中,当添加量在25%(实际留着量为15%左右)时燃烧的LOI值可以达到25%左右。Hou等人[24] 将20%~30%的CaCO3 与7%~10%的Mg(OH)2 混合添加到纸张中,可以有效地控制卷烟纸的燃烧速率及烟气释放量。含铝类阻燃剂由于受热分解吸收热量故也可以作为一种阻燃剂添加到纸浆中以提高纸张的阻燃性。Chen等
人[25] 将5%的Al(OH)3 添加到纸张之中,抄造的手抄片初始分解温度从250℃升高至300℃。王松林等
人[26] 将镁铝类水滑石(Mg-Al-LDHs)作为填料制备阻燃纸,在添加量为15%时,纸张的LOI值为25%。李贤慧等人[27] 发现在水滑石添加量达到30%时,LOI值可达到25.1%。刘跃军等人[28] 将合成的四元水滑石(Mg-Al-Zn-Fe-CO3 -LDHs)作为填料添加到阻燃纸中,当四元水滑石添加量为15%时纸样的LOI值达到25.3%,且续燃时间与灼燃时间明显缩短。李超等人[29] 在探究镁铝类水滑石阻燃体系与微胶囊红磷、聚磷酸铵、硼酸锌等阻燃剂之间的协同作用时发现,在镁铝水滑石与红磷的混合涂料涂布量为38.4 g/m2 时,炭化长度为63.4 mm,续燃时间为2.2 s,灼燃时间为2.9 s。唐鑫等
人[30] 采用硅酸钙作为填料来制备阻燃纸,当硅酸钙添加量为30%时,纸样的灼燃时间为4.5 s、炭化长度为115 mm,符合GB/T 5454—1997中的要求。林宏等
人[31] 将聚磷酸胺(APP)-硅藻土复合材料作为填料加入到纸张中,当添加量为20%时,纸样的峰值热释放速率、有效燃烧热和平均质量损失速率分别为41.01 kW/m2 、11.2 MJ/kg和0.00396 g/s;纸张燃烧后炭层较为完整,其纤维网络清晰可见,炭层强度较好、变形较少。Cayla等人[32] 将木素加入到聚乳酸(PLA)中,当木素的添加量为20%时,PLA样品的热释放速率降低;热损失量从36.4降低至4.5左右。杨文光等人[33] 将三聚氰胺氰尿酸盐(MCA)和阳离子聚丙烯酰胺(CPAM)作为纸张的阻燃体系,当该阻燃体系添加量为35%(相对于绝干浆)时,纸张的LOI值为39%,初始分解温度由275℃提高到390℃,最快分解温度由351℃提高到487℃,而最大质量损失速率则由1.66%/℃降低到0.77%/℃。4.3 阻燃涂布
生产阻燃纸常用的涂布方式大致可分为浸渍法、喷淋法和涂布法,这三种涂布工艺在纸张或纤维的防火处理中都得到应用。洪莉等
人[34] 通过浸渍法将磷酸-尿素混合体系(BL-阻燃体系)涂布到纸样上,在阻燃剂浓度为10%及以上时,浸渍涂布纸样表现出了不燃性。Jindasuwan等人[35] 通过浸渍法将含有磷酸一铵(MAP)的混合涂料涂布到桑皮纸上,使桑皮纸的热重残留量从21%升高至75%;在燃烧实验中,涂布样品体现出优异的不燃性,移除火源后火焰自动熄灭。另外,该小组还尝试使用硫酸铵对桑皮纸的手抄片进行涂布[36] ,阻燃效果同样理想。杨军等人[37] 采用十溴二苯乙烷与五氧化二锑组成溴-锑阻燃剂通过浸渍法应用于内燃机阻燃过滤纸,在溴-锑元素质量比为1∶1时,样品的续燃时间为3 s,灼燃时间为6 s,平均炭化长度为92 mm。Vasiljević等人[38] 采用P,P-联苯-N-3-硅丙基-次磷酸酰胺(SiOP)及有机酸磷脂(OP)作为涂料中的阻燃剂,结合方式如图4所示。SiOP处理后的纤维热分解温度升高30℃左右,热重损失提高了20%,OP涂布纸在垂直燃烧实验中显示出不燃性。周辉等人[39] 发现,在阻燃复合涂料中氢氧化镁、红磷、聚磷酸铵质量比为40∶5∶5时,样品的续燃时间最短达到2 s;在氢氧化镁、氢氧化铝、红磷的质量比例为30∶15∶5时,样品的续燃时间和炭化长度达到最短,分别为1.6 s和52 mm。刘蕊平等
人[1] 的研究中利用新型水溶性磷-氮系阻燃剂FR-P50L,配合阻燃辅助剂P178,采用浸渍法处理工程墙纸,发现墙纸的炭化长度降低至56 mm,平均烟气温度在200℃以下。Edwards等人[40] 将3种由1-丙烯-3-甲基丙烯酸-2-丙醇(AHM)和六氯三磷酸二烯反应制备出的磷酸基阻燃剂通过紫外固化技术搭载到纤维素表面,发现当阻燃剂在涂层中含量为15%时,样品在水平及45°放置的燃烧实验中表现出不燃性;热重残余量较空白样提高了20%左右。Liu等人[41] 将新型无机和有机硅磷水凝胶混合涂料(PPD-PTES)用于处理棉织物,垂直燃烧实验结果如图5所示。处理30 min后的纸样在垂直燃烧实验中体现了十分优异的不燃性。Januszewski等人[42] 将两种不同结构的二苯磷酸盐通过交联硅橡胶制备出棉织物阻燃涂层,使得样品的热重残留量提高了20%;总热释放量从1.696 MJ/m2 下降至1.116 MJ/m2 。Parvinzadeh等人[43] 采用乙烯基磷酸单体作为交联剂以及苯甲酮作为催化剂在纤维素纤维上搭载了碳纳米管(CNTs)制备阻燃纤维,在紫外固化时间为120 min时,样品的燃烧长度较仅添加聚乙酰基磷酸的样品燃烧长度从67 mm缩短至18 mm;燃烧速率从4.49 mm/s降低至0.94 mm/s。Vasiljević等人[44] 使用9,10-二氢-9-氧杂-10-磷菲-10-氧化物-乙烯基三甲氧基硅烷(DOPO-VTS)作为阻燃涂层,与纤维素羟基的结合方法如图6所示,使样品的LOI值上升至23.5%。唐鑫等
人[30] 将硅酸钙作为涂料对纸样进行涂布,在加入三氧化二锑和十溴二苯乙烷(质量比为2∶1)后,配合硅酸钙在纸浆中加填,可使阻燃纸的续燃时间下降至0 s,灼燃时间缩短至5.4 s,炭化长度减少到55 mm,达到阻燃的要求。王亚超等人[45] 配制了一种NaOH-Na2 SiO3 混合体系阻燃涂料,经测定样品的LOI值提高至23.5%。Hribernik等人[46] 采用自生长方法制备了纤维素的二氧化硅涂层,TGA和差热分析法(DTA)结果如图7所示。纤维的初始分解温度提高了50℃左右,提高了热稳定性。Wang等人[17] 比较了纳米二氧化钛与二氧化钛颗粒阻燃涂层的阻燃性能,纳米二氧化钛在涂料中的添加量为2%时,阻燃涂层的热重残留量较未经处理的纸张提高了36.8%。同时阻燃时间从81 min(二氧化钛)提高至96 min(纳米二氧化钛)。曾思华等
人[47] 采用壳聚糖(CH)和植酸(PA)阻燃体系处理剑麻纤维素晶体(SFCM),使样品的热重残留量由5.41%提高至37.64%,热释放速率和总热释放量分别降低了70%和80%左右,残留物形态如图8所示。Pan等人[48] 利用层层组装技术在棉织物纤维的表面搭载了壳聚糖/钛纳米管复合涂层,使得棉织物的热氧化、热稳定性都有很大程度的提高(330~700℃)。Wang等人[49] 使用胍盐(GP)和胍盐酸盐(GS)作为阻燃剂分别用于制备阻燃木浆纸(WPP),使得样品在垂直燃烧实验中分别达到B-1级和B-0级,热重残留量提高30%左右。另外,采用胍盐(GP)与硼砂(BX)组合成酸碱协同作用体系作为纸张涂料[50] ,使得涂布纸的LOI值上升至35.7%;初始分解温度也从286℃升高至314℃,具有良好的阻燃性能。5 结 语
目前应用在造纸行业的阻燃技术主要是通过填料添加、纤维阻燃改性、混合难燃纤维以及纸张的阻燃涂布方式来实现。阻燃填料的添加可以使纸张整体具有较为稳定的阻燃性;纤维的阻燃改性可以减少阻燃剂的用量,磷元素、钙元素、锌元素、钠元素的添加均可以使纸张具有阻燃性;P,P-联苯-N-3-硅丙基-次磷酸酰胺(SiOP)、9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、胍盐酸盐(GS)、胍盐(GP)等物质也可以作为阻燃剂采用涂布方式对纸张阻燃,其阻燃效果提升优于填料添加与纤维改性方式。
对于阻燃纸制品的制造过程也应视情况来分析,选择合适的阻燃技术,才能满足实际生产生活的需要。
如今造纸工业中仍在开发阻燃效果更好的阻燃剂、尝试更加高效的阻燃技术,以期在进一步提高纸张阻燃性的同时降低阻燃纸类产品的制造成本。
参考文献
- 1
Liu R P, Zhu S C, Sun Q H, et al. Application of new phosphorus nitrogen flame retardant in engineering wallpaper[J]. China Pulp & Paper Industry, 2016, 37(23): 75.
刘蕊平, 朱守诚, 孙庆红, 等. 新型磷-氮系阻燃剂在工程墙纸上的应用[J]. 中华纸业, 2016, 37(23): 75.
- 2
Bao K. Trial production of fireproof wrapping paper[J]. China Pulp & Paper Industry, 2008, 29(10): 84.
鲍 坤. 防火包装纸的试制[J]. 中华纸业, 2008, 29(10): 84.
- 3
Chen F F, Zhu Y J, Xiong Z C, et al. Hydroxyapatite nanowire-based all-weather flexible electrically conductive paper with superhydrophobic and flame-retardant properties[J]. Acs. Appl. Mater. Interfaces, 2017, 9(45): 39534.
- 4
Chen J W. Development of environment-friendly flame retardant insulating paperboard[J]. Paper Science & Technology, 2016(6): 31.
陈继伟. 环保阻燃绝缘纸板的研制[J]. 造纸科学与技术, 2016(6): 31.
- 5
Pan Q L, Xu C C, Liu M Y, et al. The Development and Application of Flame Retardant Agent in Papermaking[J]. China Pulp & Paper, 2006, 25(5): 39.
潘泉利, 徐程程, 刘明友, 等. 阻燃剂在造纸中的应用与发展[J]. 中国造纸, 2006, 25(5): 39.
- 6
Wang Q G, Zhang J, Zhang F. Working principle and application of cone calorimeter [J]. Chinese Journal of Mechanical Engineering, 2003(6): 36.
王庆国, 张 军, 张 峰. 锥形量热仪的工作原理及应用[J]. 现代科学仪器, 2003(6): 36.
- 7
Costes L, Laoutid F, Khelifa F, et al. Cellulose/phosphorus combinations for sustainable fire retarded polylactide[J]. European Polymer Journal, 2016, 74: 218.
- 8
Gaan S, Sun G. Effect of phosphorus and nitrogen on flame retardant cellulose: A study of phosphorus compounds[J]. Journal of Analytical & Applied Pyrolysis, 2007, 78(2): 371.
- 9
Katsuura K, Inagaki N. Flame-retardant properties of cellulose phenylthiophosphonate[J]. Journal of Applied Polymer Science, 2010, 22(3): 679.
- 10
Ghanadpour M, Carosio F, Wågberg L. Ultrastrong and flame-resistant freestanding films from nanocelluloses, self-assembled using a layer-by-layer approach[J]. Applied Materials Today, 2017, 9: 229.
- 11
Zhang K, Zong L, Tan Y, et al. Improve the flame retardancy of cellulose fibers by grafting zinc ion[J]. Carbohydrate Polymer, 2016, 136: 121.
- 12
Shi R, Tan L, Zong L, et al. Influence of Na+ and Ca2+ on flame retardancy, thermal degradation, and pyrolysis behavior of cellulose fibers[J]. Carbohydrate Polymer, 2017, 157: 1594.
- 13
Xu D, Ji Q, Tan L, et al. Influence of alkaline metal ions on flame retardancy and thermal degradation of cellulose fibers[J]. Fibers & Polymers, 2014, 15(2): 220.
- 14
Gao Z, Yao T, Ma T, et al. Flame retardant cellulose fibers modified by K+ or Na+[J]. Polymer Materials Science & Engineering, 2013, 29(5): 146.
- 15
Raabe J, De Souza Fonseca A, Bufalino L, et al. Evaluation of reaction factors for deposition of silica (SiO2) nanoparticles on cellulose fibers[J]. Carbohydrate Polymer, 2014, 114: 424.
- 16
Song H Z, Luo Z Q, Wang C Z, et al. Preparation and characterization of bionanocomposite fiber based on cellulose and nano-SiO2 using ionic liquid[J]. Carbohydrate Polymer, 2013, 98(1): 161.
- 17
Wang Z H, Han E H, Liu F C, et al. Thermal behavior of Nano-TiO2 in fire-resistant coating[J]. Journal of Materials Science & Technology, 2007, 23(4): 547.
- 18
Li X, Zhang K, Shi R, et al. Enhanced flame-retardant properties of cellulose fibers by incorporation of acid-resistant magnesium-oxide microcapsules[J]. Carbohydrate Polymer, 2017, 176: 246.
- 19
Nechyporchuk O, Bordes R, Köhnke T. Wet spinning of flame-retardant cellulosic fibers supported by interfacial complexation of cellulose nanofibrils with silica nanoparticles[J]. Acs. Appl. Mater. Interfaces, 2017, 9(44): 69.
- 20
Zhang H, Chang Z, Qian X, et al. In situ preparation, characterization and performance of magnesium carbonate whiskers/cellulose fibers hybrid paper[J]. Cellulose, 2014, 21(6): 4633.
- 21
Chen F, Zhang J, Li N, et al. Heat insulating, fire retardant and flexible inorganic nanocomposite paper[J]. Materials & Design, 2018, 144: 281.
- 22
Dong L Y, Zhu Y J. A new kind of fireproof, flexible, inorganic, nanocomposite paper and its application to the protection layer in flame‐retardant fiberoptic cables [J]. Chemistry-A European Journal, 2017, 23(19): 4597.
- 23
Chen X, Qian X, An X. Preparation of flame-retardant paper using magnesium salt whiskers as filler[J]. Appita Journal of the Technical Association of the Australian & New Zealand Pulp & Paper Industry, 2012, 65(1): 87.
- 24
Hou Y, Liu M, Li Y. Feasibility and influence of flame retardant Mg(OH)2 as a part of cigarette paper filler on reducing harmful smoke[C]//International Conference on Paper and Environment, Tianjin, 2008.
- 25
Chen H, Chen K, Yang R, et al. Use of aluminum trihydrate filler to improve the strength properties of cellulosic paper exposed to high temperature treatment[J]. Bioresources, 2011, 6(3): 2399.
- 26
Wang S L, Song X M. Synthesis of Mg-Al hydrotalcite and application in flame retardancy of paper [J]. China Printing and Packaging Study, 2010, 27(s1): 18.
王松林, 宋晓明. 镁铝类水滑石的合成及其在纸张阻燃中的应用[J]. 中国印刷与包装研究, 2010, 27(s1): 18.
- 27
LI Xianhui, QIAN Xueren. Study of Mg-Al Hydrotalcite as Flame Retardant Filler for Papermaking[J]. China Pulp & Paper, 2008, 27(12): 16.
李贤慧, 钱学仁. 镁铝水滑石用作造纸阻燃填料的研究[J]. 中国造纸, 2008, 27(12): 16.
- 28
LIU Yuejun, HAO Zongxian, LIU Yiwu. Multilayered Layered Double Hydroxides Metal Oxide Composite Used as Flame Retardant Filler to Prepare Flame-retardant Paper[J]. China Pulp & Paper, 2012, 31(7): 17.
刘跃军, 郝宗贤, 刘亦武. 多元层状双羟基金属复合氧化物用作阻燃填料制备阻燃纸[J]. 中国造纸, 2012, 31(7): 17.
- 29
Li C, Liu Z, Hui L F. Study on the preparation of flame-retardant paper by Mg-Al hydrotalcite [J]. China Pulp & Paper Industry, 2011, 32(2): 39.
李 超, 刘 忠, 惠岚峰. 镁铝水滑石制备阻燃纸的研究[J]. 中华纸业, 2011, 32(2): 39.
- 30
Tang X. Application of new calcium silicate filler in flame-retardant paper [D]. Tianjin: Tianjin University of Science & Technology, 2014.
唐 鑫. 新型硅酸钙填料在阻燃纸中的应用研究[D]. 天津: 天津科技大学, 2014.
- 31
Lin H, Sha L Z, Zhao H F. Synthesis of Ammonium polyphosphate/diatomite composite filler and effect on flame retardancy of paper [J]. Paper and Paper Making, 2017, 36(2): 30.
林 宏, 沙力争, 赵会芳. 聚磷酸铵/硅藻土复合填料的合成及对纸页阻燃性能的影响[J]. 纸和造纸, 2017, 36(2): 30.
- 32
Cayla A, Rault F, Giraud S, et al. Interest of wood wastes (lignin) as flame retardant fillers in bio-based polymers (PA11 and PLA)[C]//Eurofillers Polymer Blends, Montpellier, France, 2015.
- 33
Yang W G, Yang F, Yang R D, et al. Study on melamine cyanurate as paper flame retardant [J]. Paper Science & Technology, 2016(1): 57.
杨文光, 杨 飞, 杨仁党, 等. 三聚氰胺氰尿酸盐用作纸张阻燃剂的研究[J]. 造纸科学与技术, 2016(1): 57.
- 34
Hong L, Hu J, Huang C, et al. Effect of flame retardants on paper fiber by BL-flame retardant [J]. Paper and Paper Making, 2010, 29(6): 28.
洪 莉, 胡 健, 黄 铖, 等. BL-阻燃剂对纸张纤维阻燃的效果[J]. 纸和造纸, 2010, 29(6): 28.
- 35
Jindasuwan S, Sukmanee N, Supanpong C, et al. Preparation of water-repellent and flame-retardant coating on mulberry paper[J]. Advanced Materials Research, 2013, 770: 100.
- 36
Naksata W, Naksata M. Sulphate-based flame-retardant for handmade mulberry paper[J]. Advanced Materials Research, 2008, 55/57: 833.
- 37
YANG Jun, LIANG Yun, XU Guilong, et al. Development of Flame Retardant Air Filter Paper for Internal Combustion Engines[J]. China Pulp & Paper, 2010, 29(6): 6.
杨 军, 梁 云, 徐桂龙, 等. 内燃机用阻燃型空气过滤纸的研制[J]. 中国造纸, 2010, 29(6): 6.
- 38
Vasiljević J, Hadžić S, Jerman I, et al. Study of flame-retardant finishing of cellulose fibres: organic-inorganic hybrid versus conventional organophosphonate[J]. Polymer Degradation and Stability, 2013, 98(12): 2602.
- 39
ZHOU Hui, LIU Zhong, WEI Yajing. Preparation of Flame Retardant Paper with Magnesium Hydroxide as Flame Retardant[J]. China Pulp & Paper, 2009, 28(1): 13.
周 辉, 刘 忠, 魏亚静. 以氢氧化镁为阻燃剂制备阻燃纸的研究[J]. 中国造纸, 2009, 28(1): 13.
- 40
Edwards B, Hauser P, El-Shafei A. Nonflammable cellulosic substrates by application of novel radiation-curable flame retardant monomers derived from cyclotriphosphazene[J]. Cellulose, 2014, 22(1): 275.
- 41
Liu Y, Pan Y-T, Wang X, et al. Effect of phosphorus-containing inorganic-organic hybrid coating on the flammability of cotton fabrics: synthesis, characterization and flammability[J]. Chemical Engineering Journal, 2016, 294: 167.
- 42
Januszewski R, Dutkiewicz M, Maciejewski H, et al. Synthesis and characterization of phosphorus-containing, silicone rubber based flame retardant coatings[J]. Reactive and Functional Polymers, 2018, 123: 1.
- 43
Parvinzadeh G M, Almasian A. UV radiation induced flame retardant cellulose fiber by using polyvinylphosphonic acid/carbon nanotube composite coating[J]. Composites Part B: Engineering, 2013, 45(1): 282.
- 44
Vasiljević J, Jerman I, Jakša G, et al. Functionalization of cellulose fibres with DOPO-polysilsesquioxane flame retardant nanocoating[J]. Cellulose, 2015, 22(3): 1893.
- 45
Wang Y C, Zhao J P, Tong Y Y, et al. Comparative study on flame retardancy of NaOH and Na2SiO3 for fiberboard [J]. Bulletin of The Chinese Ceramic Society, 2017, 36(3): 1085.
王亚超, 赵江平, 童媛媛, 等. NaOH和Na2SiO3对纤维板阻燃性能的比较研究[J]. 硅酸盐通报, 2017, 36(3): 1085.
- 46
Hribernik S, Smole M S, Kleinschek K S, et al. Flame retardant activity of SiO2-coated regenerated cellulose fibres[J]. Polymer Degradation and Stability, 2007, 92(11): 1957.
- 47
Zeng S H, Wei C, Tan Y Y, et al. Modification of sisal fiber microcrystalline with renewable CH/PA flame retardant coating [J]. Chinese Journal of Materials Research, 2014, 28(2): 121.
曾思华, 韦 春, 谭玉园, 等. 可再生CH/PA阻燃涂层对剑麻纤维素微晶的改性[J]. 材料研究学报, 2014, 28(2): 121.
- 48
Pan H, Wang W, Pan Y, et al. Construction of layer-by-layer assembled chitosan/titanate nanotubes based nanocoating on cotton fabrics: flame retardant performance and combustion behavior[J]. Cellulose, 2015, 22(1): 911.
- 49
Wang N, Liu Y, Liu Y, et al. Properties and mechanisms of different guanidine flame retardant wood pulp paper[J]. Journal of Analytical and Applied Pyrolysis, 2017, 128: 224.
- 50
Wang N, Liu Y, Xu C, et al. Acid-base synergistic flame retardant wood pulp paper with high thermal stability[J]. Carbohydrate Polymer, 2017, 178: 123. CPP
- 1
摘要
综述了近年来阻燃技术在制浆造纸工业中的应用研究进展,介绍了阻燃剂在造纸行业中的发展过程、阻燃纸类的应用、阻燃剂的作用机理和阻燃评价方法。从纤维的阻燃改性、难燃纤维阻燃、填料阻燃和涂料阻燃等方面论述了阻燃技术在制浆造纸工业中的应用,并对以上方法进行分析与比较。
Abstract
In this paper, the application of flame retardant technology in paper industry in recent years was reviewed, including the development process of flame retardants in paper industry, the applications of flame retardant paper, the function mechanism of flame retardants and several current evaluation indexes of flame retardancy. The application of flame retardant technology in pulp and paper industry was discussed in terms of fiber flame retardant modification, adding refractory fiber, filler flame retardant and coatings flame retardant, finally the above methods were analyzed and compared.
随着国家可持续发展力度的加大,纸类材料的应用范围越来越广泛。但是纸作为一种易燃产品,每年因为纸类材料失火而引起的火灾也不胜枚举,造成了严重的经济损失。因此市场上涌现了多具种有阻燃性能的新型纸类材料,如具有阻燃性能的壁